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ABSTRACT

 

 The type III secretion system of gram-negative bacterial pathogens is a 

major virulence factor and functions to modulate host immune responses. 

Immune modulation occurs in many ways, including direct injection of effector 

proteins or indirect methods such as the detection of bacterial components by 

host immune receptors. Knowledge of these immune modulations allows for 

development of treatment options in an ever-increasing antibiotic-resistance 

climate. The studies presented here explore both areas of immune modulation. 

We identify Compound D as a potent inhibitor of the type III secretion system of 

Yersinia pestis. Through evaluation of effector secretion by bacteria grown in the 

presence of Compound D, we establish that inhibition of secretion occurs through 

translocon protein YopD and is also affected by LcrQ and YopD’s chaperone, 

LcrH. Type III Secretion inhibition by Compound D also requires a secretion 

active state of the type III secretion system as determined by analysis of strains 

that constitutively secrete effectors. The other study focuses on host recognition 

of bacterial proteins, specifically the needle protein of type III secretion systems. 

Via utilization of cells that secrete a measurable signal protein when NF-κB or 

AP-1 is activated, we show that needle proteins from Yersinia pestis, Salmonella 

enterica serovar Typhimurium, and Shigella flexneri are capable of activating cells 

through Toll-like receptors 2 and 4. This interaction appears to be modulated by 
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the N-terminus, that is reported to reside on the outside of the fully formed needle 

structure, exposed to host receptors. Activation of NF-κB/AP-1 correlates with 

production of TNF-α in response to needle proteins.  
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CHAPTER I 

INTRODUCTION

 

Type III Secretion Systems 

In order to manipulate the host, gram-negative bacteria utilize a number of 

features. One of these essential virulence factors is the type three-secretion 

system (T3SS).  T3S systems are important in several known symbiotic 

relationships, demonstrating a duality of T3S functions ranging from beneficial to 

detrimental manipulation of eukaryotic cells  (39, 87). T3SSs are found in many 

human pathogenic gram- negative bacteria including pathogenic strains of 

Escherichia coli, Shigella, Salmonella, Yersinia, and Pseudomonas  (24, 71). 

T3SSs are divided into seven families based on sequence similarities. T3SSs 

from animal pathogens fall into three of those families: Ysc-type injectisomes, 

SPI-1-type injectisomes, or SPI-2-type injectisomes. Although much of the basal 

structures of these systems are homologous, the secreted effectors and 

regulation of secretion vary between each family. Ysc injectisomes are primarily 

found in Yersinia species, P. aeruginosa, Vibrio, and Bordetella pertussis. SPI-1 

injectisomes are commonly associated with Shigella and Salmonella. SPI-2 

injectisomes are associated with enterohemorraghic E. coli (EHEC), 

enteropathogenic E. coli (EPEC), and Salmonella. Many structural proteins of the 
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T3SS are homologous between these families; those proteins that are not 

homologous often still have an analogous protein with an equivalent function  

(24). 

Structure 

The T3SS is comprised of approximately 25 different proteins that make 

up the basal body, needle, and translocon  (24). The basal body embeds in the 

inner and outer bacterial membrane via two ring-like structures connected by a 

rod structure (Figure 1)  (71).  The basal structural components are largely 

conserved between T3SSs, including bacterial flagella  (24). On the cytosolic 

side of the basal structure an ATPase can be found that is critical for secretion of 

proteins  (24). The internal channel of the T3SS is about 2-3 nm, only big enough 

for unfolded proteins to pass through  (24). The number of needle complexes per 

bacteria varies, from 10-100 complexes, depending on the species  (42).  

 Extending out from the basal structure is a hollow needle  (24). This 

portion of the secretion system is made up of repeating subunits of one protein 

and a cap protein that sits at the tip  (73). The sequence of needle proteins is 

largely conserved between bacterial species, except the N-terminus.  X-ray 

crystallography and NMR have been utilized to detect structures of some needle  
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Figure 1. Type III secretion system structure. (Used with Permission) (50) 
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proteins, including MxiH from Shigella  (27), BsaL from Burkholderia pseudomallei  

(108), and PrgI from Salmonella enterica serovar Typhimurium (S. Typhimurium)  

(108).  The crystal structure of MxiH was used to generate a model of the T3S 

needle structure  (7, 22, 27).  The MxiH-derived model of the needle protein 

possesses two coiled domains with the N-terminus of the needle protein predicted 

to line the lumen of the T3S needle  (27).  The N-terminus of the needle protein in 

all these cases was seen to be highly mobile and disordered (8, 108) offering little 

data to define structures of this portion of the protein. Sun et al. reported the N-

terminus in their crystal structure to be largely unorganized and not representative 

of the protein in its needle conformation  (98). Contrary to previous models, recent 

work by Loquet et al. has revealed that the N-terminus of the needle protein from 

Shigella is, in fact, on the outside surface of the needle, exposing it to host 

elements, while the conserved carboxy end faces the lumen  (63).  

How needle length is determined is hypothesized by several models. Models 

suggest a ruler method where a specific protein dictates the length of the needle, a 

cup method were a specific number of needle proteins are released to create the 

needle, or others suggest a combination of these two models with the proteins that 

dictate substrate switching also involved in determining needle length  (24).  Length 

of the needle depends on the species of bacteria and studies have shown that this 

length is critical in the ability of the bacteria to deliver effectors to the host  (24).  

Length of the needle is correlated with the length of major features on the outer 

surface of the bacteria such as adhesins  (72). At the tip of the needle is a protein 
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that ‘caps’ the apparatus and interacts with the final portion of the structure that 

imbeds in the host membrane  (73).  

The translocon completes the T3SS. This structure is made up of two 

hydrophobic proteins that insert into the host membrane, thus creating a channel 

directly from bacteria cytosol into the host cytosol. Through this channel unfolded 

proteins can move from the bacteria into the targeted host cell. Some bacterial 

species show that these proteins make up the cap structure as well; however this 

has not been shown true with all T3SSs  (71, 73).  

 

Effectors 

Effector molecules can mediate several functions including but not limited 

to bacterial uptake, alterations of the immune response, or prevention of 

phagocytosis (Figure 2)  (39). There are hundreds of different types of effectors 

across all T3SS  (28).  These proteins mimic host cell protein function in order to 

irreversibly control specific functions  (39). The majority of these proteins carry a 

N-terminal secretion signal  (23) as well as a chaperone-binding domain to allow 

targeting to the T3SS for export  (28).  
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Figure 2. Cellular effects of T3SS on Shigella, EPEC and EHEC, and Salmonella. (Used with 
permission) (16). SopE-like and WxxxE bacterial effectors subvert host cell pathways. Using the 
T3SS, Shigella (A), EPEC/EHEC (B), and Salmonella (C) inject the effectors IpgB1/IpgB2, 
EspT/Map/EspM, and SopE/SopE2/SifA/SifB, respectively. Except for SifA and SifB, these effectors 
activate a cascade of signal transduction pathways, starting with activation of Rho GTPases (either 
Rac1, RhoA, or Cdc42), which leads to active polymerization. Membrane ruffles induced by IpgB1, 
EspT, SopE, and SopE2 allow bacterial engulfment and subsequent internalization into a bacterium-
containing vacuole (BCV). Invasive EPEC and Salmonella remain in the BCV and induce the 
formation of intracellular actin comets and Salmonella-induced filaments (Sifs), respectively, while 
Shigella escapes to the cytosol, where it forms actin tails. In parallel to subversion of actin dynamics, 
IpgB1, IpgB2, SopE, and SopE2 induce inflammatory response, EspM, Map, SopE, and SopE2 
induce tight junction alteration, and Map induces mitochondrial dysfunction. SopE and SifA, which is 
translocated across the SCF via the SPI-2 T3SS, play a role in maintaining the SCF. The activity of 
SifB remains unknown. 
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Regulation 

Regulation of this system is crucial for delivery of effectors at the precise 

time needed. Most agree that host cell contact is crucial for activation; however, 

how this happens and through which proteins is a major debate in this field  (8, 24, 

50, 71, 73). Many proteins function to regulate secretion, though the particular 

protein and function can vary between different bacterial species. Overall, however, 

current theories hypothesize the importance of the needle as a regulatory element  

(32). In vivo, contact with the host cell membrane is required to initiate translocation 

of effectors  (85). One hypothesis of regulation via the needle is that the signal is 

structurally relayed via conformational changes of the needle from the tip to the 

base. Another hypothesis, separate from needle protein structure, involves a 

protofilament, that once released, signals secretion  (8). Several mutants of needle 

proteins have been produced that alter the regulatory control of secretion;  (55, 92, 

102) however, an exact mechanism has not been confirmed by analysis of these 

mutants.  
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Bacteria 

 

Yersinia pestis 

 

History of Plague 

Yersinia pestis was separately discovered in 1894 by Alexandre Yersin 

and Kitasato Shibasaburō as the causative agent of plague  (84).  Recognized as 

causing the same disease long know to human cultures across the Old World as 

“The Plague”, this bacteria became the focus of countless scientists bent on 

understanding its power to kill.  

Previous to identification, Y. pestis caused three pandemics across the 

Old World: The Justinian Plague, The Black Death, and The Third Pandemic. 

The Justinian plague was predominantly bubonic and spread via trade routes 

from Asia to the Byzantium Empire. The Black Death ravaged the human 

populations from China to Europe between the 14th and 19th centuries.  All three 

forms of the disease (bubonic, pneumonic, and septicemic) appeared during this 

pandemic, at times decimating the population by half in major cities. This second 

pandemic was so widespread and destructive that it reshaped economies, 

science and medicine, art, religion, and society as a whole  (60). The Third 

Pandemic, predominantly in China, led to the identification of Y. pestis, the 

identification of the bacteria’s reservoir: rodent fleas, and the method of spread 
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which directed development of control policies for health authorities  (60, 84). 

This pandemic also brought plague to the United States via shipping routes from 

Asia  (84). 

Currently Yersinia pestis is listed as a category A biological weapon by the 

CDC, along with Anthrax, Smallpox, and Tularemia. Category A bacteria are 

identified as being easily transmitted from person to person, result in high 

mortality, can cause public panic, and require special action for public health 

preparedness (CDC).  Historically Yersinia pestis has been used as a biological 

weapon, by Japan on China. Russia during the Cold war reportedly developed 

strains that would be effective terrorism agents; however, these strains were 

ordered for destruction  (60). 

 

Natural Reservoirs of Yersinia pestis 

Yersinia pestis maintains existence in nature by transmission between 

susceptible rodents and their fleas, with occasional infection of incidental hosts, 

such as humans  (84). On a whole the number of human cases worldwide result 

in 1,000 to 3,000 deaths per year, with most of those cases occurring in Africa 

(Figure 3). The last epidemic of plague was reported in India in 1994 (18). Only 

52-100 people died, with mass numbers of antibiotics distributed immediately 

and quarantines put into place to limit the spread of disease (18). 
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Once brought to the United States the bacteria infected the local rodent 

population (84). Since then, the bacteria has spread across half of the country 

taking up a natural residency in the fleas of rodents such as rock squirrels, the 

California ground squirrel, and prairie dogs  (18). Human cases are rare (1-15 

per year) and only occur in the instance of a human handling or in close contact 

with fleas of an infected rodent or direct contact with an infected rodent or feline  

(38). Most of these cases are in the southwestern and western areas of the 

United States (Figure 4). 

 

Figure 3. Reported Plague cases by country 2000-2009 (CDC). 

Figure 4. Reported cases of human plague – United 
States, 1970-2010 (CDC). 
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Biovars  

Four known biovars of Yersinia pestis exist: medievalis, antigua, and 

orientalis and the non-human pathogenic biovar microtus  (38, 62, 84, 90). These 

biovars are distinguished from each other by their ability to acidify glycerol and 

reduce nitrates  (38, 84). The biovars were named in accordance to the three 

pandemics, however recent analysis of teeth from plague victims links the biovar 

orientalis with all three pandemics  (90). Y. pestis strains used for the 

experiments of this manuscript are derived from the KIM (Kurdistan Iranian Man) 

strain and they are of the biovar medievalis.  

 

Transmission of Yersinia pestis 

Historically the flea Xenopsylla cheopis, commonly found in association 

with rodents, is the major vector of Yersinia pestis  (18, 38, 48, 84, 90). Y. pestis 

infects fleas by forming a biofilm in the flea’s midgut  (48). The biofilm blocks 

blood from getting to the flea’s stomach, leaving the flea hungry and also creating 

a regurgitation of blood into the host  (48). As the flea feeds on its host, the blood 

hits the biofilm block picking up bacteria and is regurgitated back into the host, 

thus spreading the bacteria to the host  (48, 84). This host could be a rodent, in 

most cases, or if the opportunity presents itself, a human or other mammal  (38).  

The still hungry flea will then move on to another site on the same host, creating 

multiple sites of infection with the bacteria, or move on to an additional host, 

continuing to spread bacteria with each bite  (48). Uninfected fleas collect Y. 
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pestis by feeding on an infected individual  (84). The nature of Y. pestis is to 

create a high bacteremia capable of spreading the bacteria back to uninfected 

fleas via a blood meal  (38, 48). This high bacteremia not only returns the 

bacteria into the vector but also kills the host forcing the vector to move to a new 

warm body, thus spreading the bacteria to a new host  (48, 84).  

 

Disease 

Yersinia pestis causes several forms of disease depending upon the route 

of entry. The bubonic form of disease is most commonly recognized by the 

presence of buboes, i.e. swelling of the lymph nodes with a discoloring of the 

enlarged area  (84). Other symptoms are characteristically “flu-like”: high fever, 

low blood pressure, chills, fatigue, cough, chest pain, and dyspnea  (90).  

Incubation time of bubonic plague is 2-6 days. The route of entry is commonly an 

infected fleabite with bacteria moving to a nearby lymph node via infected 

macrophages and then spreading via blood to the liver and spleen  (2, 88).  In 

the blood Y. pestis replicates to high levels causing bacteremia. High levels, >107 

CFUs/ml of blood, of bacteria are critical for reinfection of the flea vector  (48). 

These high bacterial levels however, can lead to septicemic or pneumonic plague 

typically resulting in sepsis and death  (90).  Septicemic plague has similar flu 

like characteristics with the addition of organ damage and shock  (84).  

Pneumonic plague is an infection initiated in the lung by inhaling bacteria 

or develops secondary to other infections that have spread to the lung  (84). In 
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rare cases, pneumonic plague can be transmitted person to person via coughing 

droplets of sputum containing bacteria. Incubation time is 1-3 days with a higher 

incidence of death then the bubonic form. Symptoms are pneumonia-like with 

bloody sputum  (90).   

 

Treatment 

Upon identification of the disease, the infected individual is isolated and 

treatment consists of commonly used broad-spectrum antibiotics (e.g. 

tetracycline, streptomycin, or gentamycin) (84). Historically, anyone who 

encountered the infected individual would be isolated and any fabric used by the 

infected individual would be burned to destroy infected fleas  (60).  

 

Vaccines  

The CDC offers three routes to control plague: environmental 

management, public health education, and preventive drug therapy. 

Environmental management can be controlling the local rodent population. Public 

health education includes teaching people in plague areas how to limit rodent 

populations near their living areas and maintaining flea treatment of pets  (84). 

Preventive drug therapy is given to an individual who has potentially been 

exposed to plague bacteria. Currently there is no approved vaccine for plague in 

the United States. Historically, two vaccines were developed and used. One 
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involved an attenuated live strain that lacked the pigmentation-locus (Pgm) and 

the other was a fully virulent killed strain  (84). However, both of these vaccines 

had major problems with adverse reactions, no development of long-term 

immunity, and they were not able to prevent pneumonic plague  (84, 91). Current 

vaccine research focuses on development of protein based vaccines involving 

the V antigen and the F1 capsule  (91).  

 

The Bacteria 

Yersinia pestis is a gram negative bacillus that is part of the 

Enterobacteriaceae family. The genus Yersinia contains eleven species of 

bacteria. Three of these are deemed important for human infection. Yersinia 

pestis causes plague. Yersinia pseudotuberculosis and Yersinia enterocolitica 

are both enteropathogenic species  (84). Y. enterocolitica being the more 

common infectious agent of those two, but Yersinia pseudotuberculosis is more 

closely related to Yersinia pestis  (15).  These three species of bacteria share the 

T3SS encoding plasmid, called pCD1 in Y. pestis. The extra plasmids Y. pestis 

acquired (pPCP1 and pMT1), and loss of several genes created the difference 

between an intestinal disease and the terribly lethal plague  (15). 
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Virulence Factors 

Yersinia pestis employs many factors to cause disease; primarily, these 

factors are critical for evading detection or suppressing the immune system of the 

host. Before entering the host, the bacteria is often found in a flea where several 

genes, specifically acquired by Y. pestis as opposed to the other Yersinia 

species, are required.  Expressed from pMT1, Yersinia murine toxin (Ymt), is part 

of the phospholipase D family of proteins and functions in blockage of the flea 

gut.  Ymt is toxic to mice and causes circulatory failure; however, the protein is 

not highly expressed in a bacterial infection of the mouse and plays no known 

role in infection of the mammalian host  (48). The pgm locus contains the hemin 

storage locus (hms). These genes are functional at 28°C (temperature of the flea 

vector) and are critical for formation of the biofilm that creates the periventricular 

blockage in the midgut of the flea  (48). Also encoded from the pgm locus is the 

yersiniabactin (Ybt) system that functions in iron uptake. This system is crucial 

for survival of the bacteria in low free iron environments  (84).  

As Y. pestis moves into the human host, the plasminogen activator protein 

(Pla) is utilized by the bacteria. This surface protease is expressed from pPCP1 

and is responsible for dissemination of the bacteria from the site of fleabites  (48, 

84). Once disseminated into the host, other bacterial genes become active. 

These genes are activated by temperature sensitive regulation elements. Once in 

the host the temperature shifts from ambient temperature in the flea to the body 

temperature of a mammalian host  (84). At this temperature Yersinia pestis 

makes a tetra-acylated LPS, instead of a hexa-acylated LPS. Tetra-acylated LPS 
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is non stimulatory to Toll-Like Receptor (TLR) 4 and actually antagonizes 

hexacylated LPS, consequently reducing innate immune cell activation, cytokine 

expression, and maturation of dendritic cells  (2). The fraction 1 (F1) capsule, 

also only expressed at 37°C from pMT1, forms a gel-like layer around the 

bacteria and plays a major role in preventing phagocytosis  (84). Yersinia pestis 

can survive and replicate in the macrophage, which appears to be critical in 

movement through the lymphatic system to the lymph node  (2). Known factors 

involved in survival in the macrophage are PhoP/PhoQ and a gene located in the 

Pgm locus  (88). Also at 37°C, the LcrF protein is produced. LcrF is responsible 

for the temperature-dependent activation of genes on pCD1 that encodes the 

type III secretion system (T3SS)  (23). The LcrF transcript has a unique RNA 

thermosensor, which once shifted to above 30°C allows for translation to occur  

(10). The T3SS in Yersinia pestis then plays a key role in prevention of 

phagocytosis, manipulation of cytokine expression, and killing of immune cells  

(2). The details of this system are explored separately below. 

The attenuated strain of Yersinia pestis used in these studies is the KIM8 

strain. This particular strain has a spontaneous deletion of the Pgm locus that 

lowers the risk of working with this deadly pathogen. The pPCP1 plasmid has 

also been removed to efficiently detect secreted Yops. Pla effectively degrades 

secreted proteins  (84). 
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T3SS 

The structure of the T3SS is made up of a basal structure, the needle, and 

the translocon. In Yersinia pestis this system is encoded by the pCD1 plasmid. 

Also on this plasmid are effectors, chaperones, and regulatory proteins that are 

necessary for expression, construction, and expression of the T3S. Without the 

T3SS Yersinia pestis becomes avirulent and is easily cleared by the host 

immune system  (23). 

Structure 

The base of the T3SS of Yersinia pestis is made up of proteins termed 

Ysc (Yop secretion) (Figure 1)  (84). The structure is built in the outer membrane 

first, made up of YscC, then proceeds to building the inner ring via YscD and 

YscJ  (30).  YscQ reportedly makes up the C-ring on the cytosolic face of the 

basal structure  (30).  YscQ then interacts with the ATPase, YscN, and 

subsequently YscN requires YscK and YscL  (51). Also essential are integral 

membrane proteins YscR, YscS, YscT, YscU and YscV that are thought to 

recognize or secrete the Ysc substrates  (96).  

Extending out from the base is a hollow needle structure, made up of 

repeating subunits of YscF. Currently, YscF has only been crystalized in complex 

with its chaperones YscE and YscG  (99). The pore forming structure at the end of 

the needle is called the translocon  (12, 67, 73). This structure is made up of 

three proteins: LcrV, YopB, and YopD  (73). LcrV creates a base on the tip of the 

YscF proteins that make up the needle  (24) and functions to help insert the 
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hydrophobic translocator proteins, YopB and YopD, into the host membrane  

(73). YopB and YopD then create a pore and allow Yops to translocate from the 

needle apparatus into the host cell  (73). In Yersinia there is no evidence for the 

order or timing of secretion to assemble the translocon.  It is presumed that due 

to the hydrophobic nature of YopB and YopD, these proteins are not assembled 

at the tip prior to cell contact  (74). The translocon as a whole has yet to be 

isolated and visualized to confirm this assumption  (73). This is contrary to the 

T3S system in Shigella where the T3S assembles its major hydrophobic 

translocator before cell contact  (107). In secretion profiles of Yersinia pestis, in 

vitro, all three proteins are secreted into the medium.  

Effectors 

Effector proteins are the toxins of the T3SS. These proteins, termed Yops 

(Yersinia outer proteins) are translocated into the host cell and damage host 

responses (Figure 5)  (23). Yops have a N-terminal secretion signal  (39) and are 

translocated in an unfolded state  (23). 
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Figure 5. Y. pestis resistance mechanisms in opposition to host innate immunity. (Used with 
permission) (2). (A) Resistance mechanisms at the early stage of infection. The LPS structure 
varieties of Y. pestis during transition between flea and host temperatures make the bacteria 
resistant to the serum-mediated lysis and repress the proinflammatory response. In the 
meantime, the bacteria phagocytosed by macrophages can grow and express different virulence 
determinants to act on host immune response. (B) Resistance mechanisms after the release of 
Y. pestis from macrophages. The bacteria released from macrophages attain the capacity to 
resist phagocytosis and can inhibit the production of proinflammatory cytokines, which also 
attenuate the host’s adaptive immunity.  
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YopE, YopT, and YpkA (YopO in Y. enterocolitica) are involved in 

preventing phagocytosis by interfering with Rho-GTPases. YopH is a tyrosine 

phosphatase that also inhibits phagocytosis. YopH is also involved in 

suppressing reactive oxygen species as well as disrupting adhesion proteins. 

YopM and YopJ inhibit proinflammatory signaling. YopM has also been 

implicated in a global reduction of NK cells. Neutrophil chemotaxis is inhibited by 

YopJ  (2, 23). YopJ also induces apoptosis of macrophages  (59). YopK is known 

to regulate the pore size from the host side of the translocon and controls the 

rate Yops can enter host cells  (29). 

Chaperones 

Also critical in the regulatory function of the T3SS are chaperone proteins 

that are hypothesized to assist in timing and movement of proteins to the 

secretion apparatus and/or maintain the protein in an unfolded shape or inactive 

state  (24). Chaperones are divided into three classes: Class III chaperones 

maintain the subunits of the basal structure. Class II chaperones care for the 

hydrophobic translocon proteins  (24). Specifically in Yersinia pestis, LcrH/SycD 

is the chaperone protein for YopD and YopB  (76). Along with its chaperone 

duties LcrH along with YopD have been implicated in post-transcriptional 

regulation of Yop expression  (37, 109). Class I chaperones maintain the effector 

proteins, although some effectors appear to require no chaperone, e.g. YopM  

(24).  
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Regulation of Secretion 

Regulation of the T3SS is a complex process. Under in vivo conditions cell 

contact is known to trigger secretion in this system  (27). How that signal is 

relayed to the inside of the bacteria is not known, although one theory suggests a 

conformational change occurs in structural proteins that brings the message to 

appropriate regulatory cytoplasmic molecules  (8). Under in vitro conditions, the 

Yersinia pestis T3S and the Pseudomonas aeruginosa T3S can be triggered by 

depleting the media of calcium  (11). This response is known as the Low Calcium 

Response (LCR). Several proteins are involved in the regulation process of 

secretion from inside the bacteria. LcrG blocks secretion that can be alleviated by 

interaction with LcrV  (44, 66, 77, 95).  YopN and YopN’s chaperones SycB and 

SycN, along with TyeA, form a complex that also regulates secretion of Yops  

(26, 36). YopN regulation is thought to be alleviated by secretion of YopN  (44). 

Deletion of these regulatory proteins results in an altered ability to secrete Yops. 

Either secretion will not occur, such as in the case of deletion of LcrV  (6), these 

strains are referred to as being calcium independent; or the opposite effect can 

occur where secretion will occur constitutively resulting in Yops secretion, for 

example a strain lacking LcrG  (95) or YopN  (36). These strains are called 

calcium blind strains. An additional factor that occurs in vitro when secretion is 

triggered is a twofold event involving a transcriptional increase in Yops 

expression and an overall growth restriction of the bacteria  (23).  
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Host Response 

Once Yersinia pestis has entered the host, via fleabite, the host’s immune 

system, likely macrophages and neutrophils, responds to control the infection 

(Figure 5)  (2). Y. pestis preferentially infects macrophages and is trafficked to 

the lymph node where it escapes from macrophages and begins replicating: 

disrupting the lymph node, the immune cell population, and possibly spreading to 

the blood stream. NK cells and neutrophils, however, have the capacity to kill the 

bacteria if they can traffic to the site of infection  (2). Mast cells have also been 

implicated in resistance to plague although the mechanism is not known  (80). At 

the site of the bubo, reactive nitrogen species are critical for combating the newly 

extracellular bacteria  (93). The immune system also attempts to employ TLRs, 

the complement system, and the adaptive immune response. However, Y. pestis 

is very effective at evading these defenses and shutting down early innate 

immune system alarms  (2). 

 

Salmonella enterica  

Salmonella enterica is a gram-negative pathogen that causes enteric 

disease in humans  (13, 40). The bacteria are spread by ingestion of contaminated 

food, and infection causes diarrhea. There are several serovars of enterica: Typhi 

causes Typhoid fever in humans while Typhimurium causes a Typhoid like illness 

in mice  (13). Once Salmonella has reached the intestine the bacteria attempts to 

move across the epithelium layer by invading M-cells  (13). This is achieved by the 
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use of one of Salmonella’s two T3SS, Salmonella Pathogenicity Island 1 (SPI-1)  

(13, 40). SPI-1 plays multiple roles in infection. Initially in infection SPI-1 effectors 

cause phagocytosis of the bacteria into epithelial cells and also cause an increase 

in inflammatory mediators and fluid movement into the intestine (Figure 2)  (40). 

The inflammation caused by this system loosens tight junctions in the epithelial 

layer, which can allow more bacteria to pass into the lamina propria  (13). SPI-1 is 

also capable of causing apoptosis of macrophages  (40). However, it is also 

possible for Salmonella to survive in macrophages. This is accomplished with the 

other T3SS of this bacterium SPI-2. Once inside the Salmonella Containing 

Vacuole (SCV) SPI-2 effectors protect the bacteria from reactive oxygen and 

nitrogen species and orchestrate delivery of materials from the host cell to the SCV 

to facilitate bacteria growth  (40).  

SPI-1 and SPI-2 of Salmonella are found in two families of T3SS. The SPI-1 

T3SS is more closely related to the T3SS found in Shigella, while SPI-2 resembles 

the E. coli T3SS  (24). In our studies, we primarily utilized the needle proteins from 

both of these systems: PrgI from SPI-1 and SsaG from SPI-2. Of these two proteins 

only PrgI has been crystalized  (25).  
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Shigella flexneri 

Shigella is a genus of gram-negative bacteria of the Enterobacteriacae 

family. There are four species: flexneri, sonnei, dysenteriae and boydii. Shigella 

flexneri and sonni cause endemic forms of dysentery, while Shigella dysenteriae is 

associated with epidemics.  These bacteria are spread by contamination of food or 

water and only infect humans. Symptoms associated with Shigella range from 

moderate to severe diarrhea and in more severe cases fever, abdominal cramps, 

and bloody mucoid stools. Death from this pathogen usually results from septic 

shock, severe dehydration, or acute renal failure  (86). 

Once inside the host Shigella targets the colon and moves past the epithelial 

layer via M-cells. After crossing the intestinal barrier the bacteria interacts with 

macrophages and dendritic cells. This interaction causes an increase in pro-

inflammatory cytokines and chemokines. The increase in inflammation eventually 

leads to edema, erythema, abscess formation and musosal hemorrhages  (86). 

The role of the T3SS in Shigella plays out in invasion of epithelial cells and 

macrophages (Figure 2)   (55). Effectors not only mediate uptake into the cell but 

also begin manipulating the immune response to favor high inflammation  (86). Our 

studies relating to Shigella’s T3SS focus on the needle protein, MxiH. MxiH has 

been crystalized and used to predict the needle structure  (7, 27). Mutants of MxiH 

indicate that the needle protein plays a role in “sensing” host cell contact and the 

triggering of secretion  (55). 
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Pseudomonas aeruginosa 

Pseudomonas aeruginosa is also a gram-negative pathogen that infects 

humans. This pathogen is associated with several acute disease types ranging 

from pneumonia to infections of the urinary tract, wounds, burns, and 

bloodstream. Cystic fibrosis patients are keenly susceptible to Pseudomonas 

infections as well.  

Like many gram-negative pathogens Pseudomonas also utilizes a T3SS 

to manipulate the host. Only four effectors of the T3SS of Pseudomonas exist: 

ExoS, ExoT, ExoU, and ExoY. These effectors are capable of preventing 

phagocytosis, altering cell trafficking, inhibiting cytokine release, and causing cell 

death  (46). Ultimately Pseudomonas’ goal is to evade innate immunity  (92). The 

T3SS of Pseudomonas is closely related to the T3SS of Yersinia and in vitro is 

also activated by depletion of calcium in the environment  (24). Studies by Broms 

et al. have revealed the ability of some Yersinia proteins to substitute for 

homologous Pseudomonas proteins; however, the reverse does not always work. 

YopD specifically can function in Pseudomonas however PopD, the 

Pseudomonas homolog, cannot substitute for YopD, specifically YopD’s 

regulatory functions. This study also revealed the importance of translocon 

protein chaperones for proper function  (14). 
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Small Molecule Inhibitors of T3S 

The homogeneity of T3S systems between different pathogenic bacteria 

has led to the targeting of this system for new drug discovery. The critical role of 

T3S systems in disease, and the location of T3S systems on the outside of the 

bacteria make it a key feature to exploit to prevent disease  (56). Screens for T3S 

inhibitors were designed to find compounds that prevented secretion of effectors 

but still allowed bacterial growth to decrease evolutionary pressures that can lead 

to resistance phenotypes  (1, 45, 57, 79, 82, 100). The elimination of a major 

virulence factor gives the host immune system an edge over the bacteria, 

allowing the host to mount a successful immune response and form effective 

immunological memory.  

Small molecule inhibitor screens identified compounds that inhibit 

functional activity of T3SSs, in the case of effector secretion  (5, 45, 57, 79, 82, 

106).  These compounds must also inhibit at reasonable concentrations and 

have low cytotoxicity to be considered for animal use (82). Several compounds 

have been identified that prevent secretion and/or translocation (50); however, 

how the compounds accomplish this and many of the specific target proteins are 

unknown. Some studies were created to target specific proteins of the T3SS. 

YopH  (33), LcrF  (41), and YscN  (100) have all been successful targets of such 

studies. The ability of these compounds to be effective in species other than 

Yersinia has yet to be established.  
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Our inhibitor studies utilize a small molecule inhibitor 4-4’ thiobis (2-

methylphenol) (Compound 2), as identified by Pan et al  (83) and an isoform 2,2’-

thiobis-(4-methylphenol) (Compound D). Compound 2 was found to be effective 

at inhibiting secretion of Yersinia as well as Pseudomonas aeruginosa although 

no target protein was identified  (1, 83).  

 

Host Factors and T3SS 

Toll-like receptors are common innate immunity receptors on host cells 

(Figure 6). There are several types of receptors and each one traditionally identifies 

specific pathogen patterns: TLR1/TLR2 and TLR2/TLR6 work as heterodimers to 

recognize lipoproteins, TLR3 recognizes double stranded RNA, TLR4 works in 

conjunction with MD-2 and CD-14 to recognize LPS, TLR5 recognizes flagellin, 

TLR7 and TLR8 recognize single stranded RNA, and TLR9 interacts with 

unmethylated CpG  (105). Once binding of the specific substrate occurs many 

adaptor proteins contribute to a signaling cascade that leads to activation of 

transcription factors, such as NF-kB  (54). Activation of NF-kB leads to production 

of cytokines and chemokines that can prepare the host immune system to respond 

to the pathogen  (54). There are two key adaptor proteins that TLRs utilize: MyD88 

and TRIF  (54). MyD88 is common to all TLRs except TLR3, which uses TRIF  

(105). TLR4 is unique that it can use either MyD88 or TRIF as its initial adaptor 

protein  (54). 



www.manaraa.com

	   28	  

Contemporary research directed towards T3S systems largely centers on 

the structure, regulation, and role of the translocated toxins in bacterial diseases  

(24).  Currently few studies are being conducted on the roles of T3S structural 

components within the innate immune response such as TLRs. Known TLR 

recognized patterns within T3SS include flagellin, the major component of the 

bacterial flagellar shaft, known to be an important molecule that interacts with TLR5 

and Nlrc4 to induce cytokine expression  (70). Homologs of the needle rod protein 

PrgJ from Salmonella SPI-1 interact with Nlrc4 to induce cytokines  (69).  

Interestingly, the equivalent protein of the SPI-2 system, SsaI, does not have the 

same effect  (69). LcrV at the tip of the needle complex has been reported to 

interact with TLR2  (94); however, contradicting reports have called this response 

Figure 6. Toll-Like receptors (Used with permission) (54). TLR-mediated immune 
responses. TLR2 in concert with TLR1 or TLR6 discriminates between the molecular patterns 
of triacyl and diacyl lipopeptide, respectively. TLR3 recognizes dsRNA. TLR4 recognizes 
bacterial LPS. TLR7/8 mediates recogniation of imidazoquinolines and ssRNA. TLR9 
recognizes CpG DNA of bacteria and viruses. TLR5 recognizes bacterial flagellin and mouse 
TLR11 recognizes components of uropathogenic bacteria and profilin-like molecule of the 
protozoan parasite Toxoplasma gondii. TLR1/2 and TLR 2/6 utilize MyD88 and TIRAP/MAL as 
essential adapters. TLR3 utilizes Trif. TLR4 utilizes four adapters, including MyD88, 
TIRAP/MAL, Trif and TRAM. TLR7/8, TLR9, TLR5, and TLR11 use only MyD88. The MyD88-
dependent pathway controls inflammatory responses, while Trif mainly mediates type I IFN 
response. In addition, TLR7/8 and TLR9 induce type I IFN in a MyD88-dependent manner in 
pDCs.  
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into question  (99). The needle proteins’ location on the outside of the bacteria 

appears to be a prime location to activate host TLRs; however, no study has 

identified an interaction between host response elements and needle proteins.   

 

The following research was completed to evaluate (1) if an isomer of a 

known T3SS small molecule inhibitor (Compound 2) could also inhibit T3SS and if 

so by what target and mechanism. (2) What host receptor does full length and 

truncated T3SS needle proteins interact with to cause an systemic increase in 

cytokines, as seen in previous work by our lab. We demonstrate the successful use 

of a novel T3SS inhibitor, Compound D, the target(s) of Compound D with a 

proposed mechanism, and the additional characterization of the host innate 

immune system response to purified needle proteins of the T3SS. The use of 

Compound D has proved to be useful in furthering the understanding of the T3SS. 

Characterization of the host innate immune system response to needle proteins will 

help to understand how several bacteria manipulate the immune system to cause 

disease. This information is useful in creating novel treatments or utilizing current 

approved treatments in new ways. Purified needle proteins may also become 

useful in artificially modulating the host immune response. 
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CHAPTER II 

MATERIALS AND METHODS

 

Bacterial strains and plasmids 

Bacterial strains and plasmids used in this study are listed in Table 1. All 

strains were stored at -80°C in 25% glycerol (v/v). Electroporation of DNA into Y. 

pestis cells was done as described previously (77). Plasmid pBAD YopD was 

constructed by cloning a NheI–cleaved PCR product into pBAD18. The primers 

used to amplify yopD were 5’YopD BAD NheI (5’ CTC TCT CTC GTT AGC ATG 

ACA ATA AAT ATC AAG ACA 3’) and 3’YopD BAD NheI (5’ TCT CTC TCT GCA 

TGC TCA GAC AAC ACC AAA AGT GGC 3’). Plasmid pBAD lcrH was 

constructed by cloning a SacI and HindIII digested PCR product into pBAD33. 

The primers used to amplify lcrH were (5’ CCG AGC TCA GGA GGA AAC GAT 

GCA ACA AGA GAC GAC 3’) and (5’ CCC AAG CTT CTG GGT TAT CAA CGC 

ACT C 3’). YopE129-Elk expression vector pMH141 was constructed by cloning 

an EcoR1 cleaved PCR product into a a SmaI and EcoR1 cleaved pBAD18 

vector. The primers used to amplify a YopE-Elk chimera encoding DNA segment 

from plasmid pYopE129-Elk {Day 2003} were AraYopEstart (5’ GGA ATT CAG 

GAG GAA ACG ATG AAA ATA TCA TCA TTT 3’) and Elk-stop (5’ ACA TGC 

TGC TCA CTT GGC CGG GC 3’). Plasmid pMH73 for production of LcrV was 
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constructed by cloning a NdeI and BamHI cleaved PCR product into pET9. The 

primers used to amplify lcrV were (5’ TAC ATA TGC ATC ATC AT CAT CAT 

CAT GTG TTA GAG CCT ACG 3’) and (5’ GCG GGA TCC TCA TTT ACC AGA 

CGT GTC ATC TAG C 3’). Plasmid pMH166 for production of YopD were 

constructed by cloning a BamHI and NdeI cleaved PCR product into pET9. The 

primers used to amplify yopD were YopDStart (5’ GGA ATT CCA TAT GCA TCA 

TCA TCA TCA TCA TAC AAT 3’) and YopDstop (5’ GCG GGA TCC TCA GAC 

AAC ACC AAA AGC GGC 3’). 

Deletion of lcrGVH from KIM8 was accomplished using the method 

described by Nilles et al  (78). Primers used to create deletion segment: LcrGVs 

(5’ CGC GGA TCC GCT ATC TGC TCG AAC AGA 3’) and LcrG 1-5 (5’ CGG 

GGT ACC TTA ATG GGA AGA CTT CAT AAT CTA 3’) and lcrH kpnI (5’ TGG 

GTA CCT AAG TGG CTT GTT CTT GGC TCA AGA GCT 3’) and lcrHDS (5’ 

CCA ACG GCG ACT TGT GTT GCC TGT GAT CCT GTA CGG 3’). Upstream 

segments were cut with KpnI and BamHI and downstream segments were cut 

with KpnI. Segments were ligated in pLD55 after digest with SmaI and BamHI. 

Resulting plasmid was used for allele exchange with pCD1  (68). 

PCR primers were designed to clone a fragment of yscF missing the 66-bp 

region (encoding for the first 22 amino acids) of the N-terminus of YscF into an 

expression vector, pET200 (Invitrogen, Carlsbad, CA).   The primers used were 

TrncYscFStartMT (5’ CAC CCT CAA GAA GCC AGC AGA CGA TGC AAA CAA 

AGC GG-3’) and TrnctYscFStopMT (5’- TTA TGG GAA CTT CTG TAG GAT 
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GCC TTG CAT TAA-3’).  The resulting PCR fragment was cloned into pET200 

TOPO® (Invitrogen).   

Plasmids used in this study to overexpress needle proteins were 

constructed in pET200 TOPO® using ChampionTM TOPO expression kits 

(Invitrogen, Carlsbad, CA). Primers for gene amplification were made Eurofins 

MWG Operon, Inc (Huntsville, AL).  Primers used for cloning were as follows: WT 

PrgI forward 5’- CAC CAT GGC AAC ACC TTG GTC-3’, PrgI reverse 5’- TTA 

ACG GAA GTT CTG AAT AAT GGC AG-3’, Truncated PrgI forward 5’-CAC CTT 

TGA TAC GGG CGT TGA TAA TCT ACA AAC G-3’, WT SsaG forward 5’-CAC 

CAT GGA TAT TGC ACA ATT AGT GGA TAG CTC TCC-3’, SsaG reverse 5’-

TCA GAT TTT AGC AAT GAT TCC ACT AAG CAT ATC C-3’, Truncated SsaG 

forward 5’-CAC CCT CTC CCA CAT GGC GCA C-3’.  Template DNA for 

amplification was generated using the DNeasy kit (Qiagen; Valencia, CA); the 

manufacturer’s instructions were followed.  PCR was performed using PFU 

Turbo® polymerase (Agilent Technologies, Santa Clara, CA).  Amplified DNA 

was then placed in pET200 using the Champion™ TOPO expression kit, 

manufacturer’s instructions were followed.  All of the gene constructs were 

verified by sequencing by Eurofins MWG Operon (Brussels, Belgium).  Vectors 

were stored in TOP10 E. coli by chemical transformation. WT and truncated 

MxiH encoding plasmids are a kind gift from Dr. William Picking, Oklahoma State 

University. Plasmids for protein expression were purified from TOP10 E. coli by 

Qiaprep Miniprep kit (Qiagen).  Purified plasmid DNA was then transformed into 

the expression host, BL21(DE3) Star™ (Invitrogen, Carlsbad, CA).
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Table 1: Strains and Plasmids used in this study 

_____________________________________________________________________ 

Strain Relevant properties Reference 

Yersinia pestis 

KIM8 pCD1 (Lcr+) pMT1 Pla-  S. Straley 

KIM8-3002.1 pCD1 ΔyopB [8-388] (Lcr+) pMT1 pPCP1- Smr {Skrzypek 1998} 

KIM8-3002.2 pCD1 ΔyopD [1-305] (Lcr+) pMT1 pPCP1- Smr {Williams 1998} 

KIM8 ΔyopK pCD1 (Lcr+) pMT1 pPCP1- Smr ΔyopK Lab Stock 

KIM D27.1005 pCD1 (Lcr+) pMT1 Smr ΔlcrH {Chen 2011} 

KIM8-3002.9 pCD1 ΔlcrQ [Δ1−116] (Lcr+) pMT1 pPCP1- Smr (Wulff-Strobel 
2002} 

KIM8 ΔyopE pCD1 ΔyopE [yopE::res, kan::res] (Lcr+) pMT1 pPCP1 Lab Stock 

KIM8-3002.7 pCD1 ΔlcrG2 [Δ5-95] (Lcr+) pMT1 pPCP1- Smr {Nilles 1997} 

KIM8-3002.8 pCD1 ΔlcrGV2 [LcrG Δ6-95] [LcrV Δ1-268] (Lcr+) pMT1  {Fields 1999} 

 pPCP1- Smr  

KIM8 ΔlcrGVH pCD1 ΔlcrGVH (Lcr+) pMT1 pPCP1-  This study 

KIM8-3002.N3 pCD1 ΔyopN [48-197] (Lcr+) pMT1 pPCP1- Smr {Hamad 2006} 

KIM8 ΔyscB pCD1 ΔyscB [61-125] (Lcr+) pMT1 pPCP1- Smr G. Plano 

KIM8 3002.P9 pCD1 ΔsycN [34-65] (Lcr+) pMT1 pPCP1- Smr {Day 1998} 

YP814 pCD1 (ΔsycE-yopE::km yscF D46A) pPCP1- pMT1 G. Plano 

 

E.coli 

Novablue recA1 endA1 hsdR17 (rK
- mk

+) supE44 Thi-1 gyrA96 Novagen 

 relA1 lac (F’ proA+B+) lacIqZΔM15::Tn10) 

BL21 F- ompT hsdSB (rB
- mB

-) gal dcm (DE3) Novagen 

TOP10 F-mcrA Δ(mrr-hsdRMS-mcrBC) ψ80lacZΔM15 Δlacx74  Invitrogen 

 nupG recA1 araD139 Δ(ara-leu) 7697 galE15 galK16  

 rpsL(StrR) endA1λ- 
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Table 1 cont. 

Yersinia pseudotuberculosis 

YP126 Wild type, YPIII(pYV+) {Palmer 1999} 

 

Pseudomonas aeruginosa 

PA103 Wild type {Sato 2011} 

 

Plasmids 

pBAD18 yopD araBADp cloning vector, Apr + yopD This Study 

pBAD33 lcrH araBADp cloning vector, Cmr + lcrH This Study 

pMH139 araBAD, Apr yopE1-129-Elk  This Study 

pMH73 pET9 N-terminus His –LcrV This Study 

pMH166 pET9 N-terminus His –YopD This Study 

pET15b MxiH  Bill and Wendy Picking 

pET15b Δ1-18 MxiH  Bill and Wendy Picking 

pET15b Δ1-17 PrgI   Bill and Wendy Picking 

pET200 PrgI  Drew 2012 

pET200 SsaG  Drew 2012 

pET200 Δ1-9 SsaG  Drew 2012 

pJM119 pET24b-YscF Kmr {Matson 2005} 

pMNT67 pET200-trYscF Kmr Toosky 2011 

_____________________________________________________________________ 

 

Media and growth conditions 

Y. pestis, Y. pseudotuberculosis, P. aeruginosa were grown at 26°C in 

Heart Infusion Broth (HIB,Difco, Detroit MI). Overnight cultures were used to 

inoculate HIB to an A620 of 0.1 and grown at 26°C with shaking. HIB was 

supplemented with 1 mM MgCl2, 2 mM CaCl2 (referred to as cultures with Ca2+) 

or supplemented with 2.5 µM EGTA for Ca2+ depletion (referred to as cultures 
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without Ca2+). When appropriate, bacteria were grown in the presence of 

carbenicillin at a concentration of 50 µg/ml, chloramphenicol at a concentration of 

25 µg/ml, and/or arabinose (0.2% w/v) to induce expression of genes [e.g. 

truncated yopE-Elk] from the vectors. When the A620 reached 0.2, Compound D 

or Compound 2 dissolved in DMSO was added at indicated concentrations. The 

cultures were then shifted to 37°C to induce T3S and incubation was continued 

for an additional 6 h. Escherichia coli strains were grown at 37°C in LB broth or 

on TBA plates with antibiotics added as needed. Antibiotics were used at the 

following concentrations: kanamycin, 50 µg/ml, and carbenicillin, 50 µg/ml. 

 

Cell Culture 

THP-1 X-Blue Cells were acquired from Invivogen, Town, CA and grown 

in RPMI 1640 supplemented with 10% fetal bovine serum, 100 µg/ml Normocin 

(Invivogen), 50 µg/ml Pen-Strep (Cellgro, Manassas, VA) at 37°C with 5% CO2. 

HEK293 cells expressing human TLR2 (CD14), TLR4 (MD-2/CD14), or TLR5, 

were acquired from Invivogen and grown in DMEM supplemented with 4.5 g/l 

glucose, 10% fetal bovine serum, 50 µg/ml Pen-Strep, 100 µg/ml Normocin, 2mM 

L-glutamine, at 37°C with 5% CO2. THP-1 X-Blue and HEK293 cells contain the 

secreted embryonic alkaline phosphatase (SEAP) reporter gene under control of 

NF-κB and AP-1 (THP-1 X-Blue) or NF-κB (HEK293).  
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His-tagged Protein Isolation 

Escherichia coli BL-21(DE3) carrying plasmids for a given protein were 

grown overnight in non-inducing media (50xM, 1M MgSO4, 40% glucose, 5% 

Aspartic Acid,  (97)) supplemented with the correct antibiotic. Bacteria were then 

inoculated into auto-inducing media (50xM, 1M MgSO4, 50x5052, NZ-amine S, 

Yeast Extract, distilled water, (97)) with antibiotic and grown to an A620 of 0.6-

0.8. Cells were harvested by centrifugation at 4,000 x g for 10 min at 4°C and 

resuspended on ice in wash buffer (50 mM NaH2PO4, 300 mM NaCl, 10% (w/v) 

glycerol). The resulting cellular suspension was then French pressed at 20,000 

psi twice to lyse cells. The lysate was then clarified by centrifugation at 4,000 x g 

for 20 min. The clarified supernatant was collected and diluted with 1,000 mL of 

wash buffer before application to pre-equilibrated TALON metal affinity resin 

(Clontech, Mountain View, CA) column. The lysates were applied to the columns 

twice before washing with new wash buffer. Bound protein was eluted in buffer 

containing 50 mM sodium phosphate, 200 mM NaCl, 150 mM imidazole, and 

20% glycerol (w/v). Purified protein was concentrated with Amicon Ultra 

Centrifugal Filters (Millipore, Billerica, MA) and dialyzed against PBS + 10% 

glycerol (w/v) in Slide-A-Lyzer dialysis cassettes  (Thermo Fisher Scientific, 

Rockford, IL) before SDS/Page gel assessment of purity. Protein concentrations 

were determined by Bradford Protein Assay Kit (Thermo Fisher Scientific, 

Chicago, IL) and stored at -20°C for future use. 
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Secreted protein sample preparation  

After 4 h of growth at 37°C in HIB, samples from Y. pestis cultures were 

taken for analysis of Yops secretion and expression. Whole cells were separated 

from cell-free culture supernatants by centrifugation for 5 minutes at 16400 g and 

4°C as previously described  (77). Proteins were precipitated from whole cell or 

culture supernatant fractions with 10% trichloroacetic acid (w/v, TCA), and 

subsequently dissolved at 0.1 A620•ml in 2x SDS-PAGE sample buffer  (77). 

 

Protein electrophoresis and immunoblot detection 

Whole cell and supernatant protein samples were used to load single 

lanes for SDS—polyacrylamide gel electrophoresis (SDS-PAGE) according to 

the method described by Laemmli  (58).  Samples were boiled for 10 minutes 

before loading on gels. Proteins separated by SDS-PAGE were then transferred 

to Immobilon-P membrane (Millipore Corp., Bedford, Mass) for immunoblot 

analysis of select proteins (LcrV, YopB, YopD, YopE, YopM, YopN, YopK, Elk) 

using polyclonal antibodies specific for each Yop (His-tagged LcrV (αHTV)  (77), 

YopM (αYopM)  (75), YopN (also known as LcrE (αLcrE)  (77), YopE (α-YopE; 

gift from S.C. Straley, University of Kentucky, Lexington), and YopB (α-YopB; gift 

from J.B. Biliska, Stony Brook University, Stony Brook, New York), YopK (α-

YopK – Lab Stock), or a monoclonal for Elk (Cell Signaling, Beverly MA). Bound 

primary antibodies were detected with alkaline phosphatase conjugated to 

secondary antibodies (goat anti-rabbit immunoglobulin G; Pierce) followed by 
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color development with 5-bromo-4-chloro-3-indolylphosphate/nitroblue 

tetrazolium (NBT-BCIP, Thermo Fisher Scientific, Chicago, IL).  

 

Hemolysis Assay 

Yersinia pestis deleted for yopK was grown overnight in BHI. The bacteria 

was then subcultured to an A620 of 0.3 and supplemented with EGTA. After 

growing for 1 h temperature was shifted to 37°C and grown for 3 h. Bacteria were 

then resuspended in 37°C PBS to a density of 50 A620•ml. Sheep Blood was 

centrifuged at 1,000 x g for 10 min at room temperature, washed twice in ice-cold 

PBS, and resuspended to 4x109 cells/ml. In 96 well plates, 50 µl of RBC’s with 50 

µl of bacteria were combined and some samples were treated with 60 µM of 

Compound D as indicated. The plate was then centrifuged at 1,000 x g at room 

temperature for 10 min. The plate was then moved to 37°C for 3.5 h. After the 

incubation 150 µl of PBS was added to wells (water was added to one set of cells 

as a control for RBC lysis) and the plate was again centrifuged at 1,000 x g at 

4°C for 10 min. 100 µl of supernatant was transferred to a clean plate and the 

A570 read. 

 

His-tagged Proteins interaction with Compound D 

HisPur Cobalt Resin (Thermo Fisher Scientific) was mixed overnight at 

4°C with PBS or His6-LcrV or His6-YopD. Resin/Protein mixture was eluted by 
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centrifugation at 700 g at 4°C. Compound D or Compound 2 dissolved in DMSO 

or DMSO alone was added to remaining resin and mixed overnight at 4°C. 

Compound D, Compound 2 or DMSO were eluted the next morning and added to 

flasks containing Y. pestis KIM8 to assess presence of inhibitor by the ability of 

the elute to effect the ability of Y. pestis KIM8 to secrete Yops. 

 

Stimulation of SEAP activity in cell lines by needle proteins 

THP-1 X-Blue cells were seeded at 2 x 106 cells/ml and HEK 293 cells at 

2.5 x 105 cells/ml. Cells were suspended in infection medium as described by the 

manufacturer. Proteins were added at a final concentration of 1 µg/mL. As 

indicated, 20 µg/ml of antibodies (PAb (polyclonal antibody) Control, PAb hTLR2, 

Invivogen) or TLR4 inhibitor CL1-095 (Invivogen) were added to cell cultures, as 

suggested by the manufacturer, prior to addition of needle proteins. Cells were 

stimulated at 37°C with 5% CO2 for 5 h or 24 h, as indicated. 

 

Enzyme Digestion of Needle Proteins  

Proteinase K (Thermo-Fisher) 40 µg/ml was used to digest needle 

proteins and flagellin. PBS treated with proteinase K was used as a control. 

Proteins were digested overnight at 37°C. Proteinase K was then inactivated with 

1.6 mg/mL phenylmethanesulfonylfluoride (PMSF). Digested proteins and PBS 

treated were then used to stimulate THP-1 cells. 
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LPS Assay 

ToxinSensor Chromogenic LAL Endotoxin Assay Kit (GenScript, 

Piscataway NJ) was used to test for endotoxin in protein samples. The Kit was 

used as described by the manufacturer. An equivalent amount of the endotoxin 

standard as found contaminating the needle protein samples was then applied to 

THP-1 X-Blue cells as described above, resulting in no stimulation of THP-1 X-

Blue cells. 

 

Cytokine Analysis 

Cellular supernatants from THP-1 X-Blue NF-kB activation experiments 

were collected and stored at -80°C before analysis with Quantikine Elisa kits from 

R&D Systems (Minneapolis, Minnesota). The Human TNF-α kit was used as 

instructed by manufacturer.   

 

SEAP Reporter Assays 

Quantification of secreted embryonic alkaline phosphatase (SEAP) from 

the supernatant was detected using Quanti-Blue reagent (Invivogen) according to 

manufacturer’s protocol. A microplate reader, Synergy HT (Bio-Tek, New 

England Ipswich, MA) quantified SEAP at 630 nm using KC4 v3.3 software (Bio-

Tek). 
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Image acquisition and production 

All immunoblots were scanned on Epson 4490 Perfection scanner at 4800 

dpi using VueScan Software (v. 8.4.40; Hamrick Software, 

[http://www.hamrick.com]. The scanned blots were imported into Adobe 

Photoshop [CS5.1, Adobe Software, San Jose, CA) the images were converted 

to grayscale and the autolevels function was applied. Final figures were 

assembled in Adobe Illustrator (CS5.1) and images were downscaled to the final 

resolution upon export to the PNG file format. 

 

Data Analysis and Statistics  

Needle Protein data was assembled into graphs using GraphPad Prism, 

version 5.0d (GraphPad Software). Statistical analysis of SEAP levels was 

completed by using one way analysis of variance with Bonniferri or Dunnett’s 

Multiple Comparisons posttest.
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CHAPTER III 

RESULTS

 

Results inhibitor Compound D 

 

Compound D inhibits secretion of Yops by Kim8 

Several T3SS inhibitors have been identified, including an isoform of 

Compound D (Figure 7)  (83). We intended to evaluate the ability and 

mechanism of Compound D to inhibit T3SS in Yersinia pestis. Compound D was 

found to inhibit secretion of YopB, YopD, YopK, YopM, and YopE at a 

concentration of 60 µM (Figure 8A lane 4) in Y. pestis KIM8. Interestingly, LcrV 

secretion was not inhibited, suggesting functional needles were assembled, 

implying that Compound D functioned after secretion of LcrV was initiated. Whole 

cell fractions demonstrated the presence of YopB, YopD, YopK, YopM, and 

YopE proteins by immunoblotting (Figure 8B) within bacteria. Expression of the 

analyzed proteins appeared to remain at lower levels, indicative of a non-

secreting environment (Figure 8B lane 4)  (85). At 20 µM Compound D low levels 

of Yops secretion were seen in supernatant samples and cellular levels were 
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more comparable to wildtype in the absence of calcium (Figure 8A-B lane 6). 

Compound D, like its isomer Compound 2, was found to be toxic to cultured 

eukaryotic cells (data not shown), resulting in an inability to examine the ability of 

Compound D to inhibit Yops translocation into cultured cells.  An alternative 

method to evaluate translocation is to examine the ability of Y. pestis yopK 

strains to lyse red blood cells  (47, 77). In order to test the effect of Compound D 

on Yops translocation into red blood cells, we tested the yopK strain with 

Compound D. Compound D was able to inhibit secretion of YopM and YopE just 

as seen with the wildtype (Figure 9A) with similar effects compared to wildtype on 

cellular protein levels (Figure 9B). Once the effect of Compound on the yopK 

strain was determined to inhibit Yops secretion like the wildtype strain, an 

attempt to analyze the effect of Compound D on translocation was performed 

using a hemolysis assay. yopK strains will lyse red blood cells as an indicator of 

active translocation  (47, 77). However, Compound D lysed red blood cells (data 

not shown) making the effect of Compound D on translocation impossible to 

evaluate. Subsequently all studies analyze Yops secretion into the culture 

medium. 

Figure 7. Compound D   

2,2’-thiobis-(4-methylphenol) structure 
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Figure 8. Compound D inhibits secretion in wildtype Yersinia pestis KIM8  

(A) Secreted and (B) Cellular proteins from Y. pestis KIM8 assessed via immunoblot with antibodies to 
YopM, YopB, LcrV, YopD, YopE, and YopK in the absence of Compound D (lanes 1-2) and presence 
of Compound D at 60µM (lanes 3-4), 20µM (lanes 5-6). For panels A and B odd numbered lanes are 
samples in the presence of calcium and even numbered lanes are samples in the absence of calcium.  
All lanes are loaded with protein derived from 0.05 A620•ml of bacterial culture.  

 

Figure 9. Compound D inhibits secretion in a Y. pestis ΔyopK strain 

 (A) Secreted and (B) Cellular proteins in Y. pestis KIM8 ΔyopK were assessed via 
immunoblots probed with antibodies to YopM and YopE. Samples lacking Compound D 
(lanes 1-2) and treated with 60µM Compound D (lanes 3-4). For panels A and B odd 
numbered lanes are samples in the presence of calcium and even numbered lanes are 
samples in the absence of calcium. All lanes are loaded with protein derived from 0.05 
A620•ml of bacterial culture. 

   B. 
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Translocon protein YopD plays a role in Inhibition of Secretion by 
Compound D 

Since secretion of the translocon-staging protein LcrV was unaffected by 

Compound D, strains lacking the other translocon proteins YopD and YopB were 

evaluated for the ability of Compound D to inhibit Yops secretion. The Y. pestis 

yopB strain behaved similar to wildtype Y. pestis (Figure 10A and 10B): In the 

presence of Compound D, Yops were present in whole cell fractions although at 

low levels, indicative of a non-secreting environment, and Yops were not 

secreted under secretion permissive circumstances. However, when the yopD 

mutant was grown under secretion inducing conditions in the presence of 

Compound D, Yops secretion was not inhibited as seen in the wildtype strain and 

the yopB strain (Figure 10C lanes 4 and 6), suggesting that YopD plays a role in 

inhibition mediated by Compound D. As expected, hyper secretion of Yops was 

seen in the cellular environment of the ΔyopD strain and the levels of cellular 

proteins were not affected by the inhibitor  (Figure 10D). This result suggests 

YopD is involved in Compound D inhibition; however, YopB is not.  

 

LcrH and LcrQ uniquely affect Compound D inhibition 

Since both YopB and YopD require the chaperone LcrH (SycD) for 

function, the effect of Compound D on an lcrH deleted strain was examined. As 

shown by Francis et al., phenotypically distinguishing between an lcrH deleted 

and yopD deleted strain is difficult  (37). The phenotypic effects of deleting lcrH 

could have to do with lacking YopD or YopB and not LcrH.  Therefore, the lack of  
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Figure 10. Compound D blocks secretion in a Y. pestis yopB strain, but not in a Y. pestis 
yopD strain.  

 (A) Secreted and (B) cellular proteins from Y. pestis KIM8 ΔyopB were assessed via 
immunoblots probed with antibodies to LcrV, YopN and YopE in the absence (lanes 1-
2) and the presence of 60 µM Compound D (lanes 3-4). (C) Secreted and (D) cellular 
proteins from Y. pestis KIM8 ΔyopD were assessed via immunoblots probed with 
antibodies to YopN and YopE in the absence (lanes 1-2) and presence of Compound 
D at 80 µM (lanes 3-4), 60 µM (lanes 5-6), and 20 µM (lanes 7-8). For panels A-D odd 
numbered lanes are samples in the presence of calcium and even numbered lanes 
are samples in the absence of calcium. All lanes are loaded with protein derived from 
0.05 A620•ml of bacterial culture. 
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secretion inhibition in the yopD strain could be due to effects on either LcrH or 

YopD. Hence, an lcrH strain was tested with Compound D. lcrH strains hyper 

secrete Yops just as yopD strains (Figure 11B).  When Yops secretion in the lcrH 

strain was examined in the presence of Compound D, YopE secretion was 

inhibited, while YopM secretion was not inhibited (Figure 11A lane 4). 

Interestingly, YopE has a chaperone protein, while YopM does not. This tells us 

that LcrH could be involved with Compound D; or a function of LcrH on YopD 

may be to affect the secretion of unchaperoned Yops such as YopM. 

Figure 11. Compound D inhibits secretion of YopE but not YopM in a Y. pestis lcrH strain 

(A) Secreted and (B) Cellular proteins from Y. pestis KIM5 ΔlcrH were assessed via 
immunoblots probed with antibodies to YopM and YopE in the absence (lanes 1-2) and the 
presence of 60µM Compound D (lanes 3-4). For panels A-D odd numbered lanes are samples 
in the presence of calcium and even numbered lanes are samples in the absence of calcium. 
All lanes are loaded with protein derived from 0.05 A620•ml of bacterial culture. 

Ca2+ Ca2+ 
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         LcrQ function relies upon YopD (109) and is thought to regulate the 

hierarchy of Yops secretion  (110). We therefore also looked at an lcrQ deleted 

strain. Yop secretion is normal in the absence of Compound D. When the lcrQ 

strain is grown in the presence of Compound D, YopM and YopE secretion are 

reduced but not eliminated, and the effect appears to be greater on YopE (Figure 

12A, lane 4). This result indicates that LcrQ or its function at the sorting complex 

could play a role in inhibition by Compound D. Expression of YopM and YopE 

appears to be reduced in the presence of the inhibitor, as seen by the reduction 

of levels evident by immunoblotting whole cell fractions (Figure 12B). 

 

Figure 12. Compound D also inhibits secretion of YopE but not YopM in a Y. pestis 
ΔlcrQ strain. 

(A) Secreted and (B) cellular proteins from Y. pestis KIM8 ΔlcrQ were assessed 
via immunoblot probed with antibodies to YopM and YopE in the absence 
(lanes 1-2) and the presence of 60µM Compound D (lanes 3-4). For panels A 
and B odd numbered lanes are samples in the presence of calcium and even 
numbered lanes are samples in the absence of calcium. All lanes are loaded 
with protein derived from 0.05 A620•ml of bacterial culture. 

Ca2+ Ca2+ 
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Overexpression of YopD in KIM8 overcomes Compound D inhibition 

To confirm involvement of YopD with Compound D, YopD was 

overexpressed in trans in Y. pestis strain KIM8 (Figure 13A and 13B). If YopD is 

the target of Compound D than overexpression of YopD might relieve the effect 

of Compound D.  However, overexpression of YopD alone did not alleviate 

Compound D’s ability to inhibit secretion (Figure 13A, lanes 5-8). Since 

overexpression of YopD alone did not alleviate the effect of Compound D in 

KIM8, both YopD and its chaperone LcrH were overexpressed and tested for the 

relief of Compound D-mediated inhibition of Yops secretion. Overexpression of 

YopD and LcrH overcame the inhibitory effect of Compound D (Figure 13A: lanes 

13-16) in KIM8. Overexpression of LcrH alone resulted in reduced secretion and 

cellular expression without Compound D as previously observed,  (6) and no 

secretion in the presence of Compound D (Figure 13A: lanes 9-12). By 

overexpressing YopD and LcrH, the inhibitory effect of Compound D was 

alleviated, indicating the extra YopD and/or LcrH sequestered the inhibitor and 

allowed secretion to occur.  

 

YopD and LcrH transcomplement a YopD mutant to restore inhibition by 
Compound D 

The ΔyopD mutant was complemented with plasmids containing yopD, 

lcrH, or with yopD and lcrH (Figures 14A and 8B). Again, expression of yopD or 

lcrH alone in the ΔyopD strain did not restore the ability of Compound D to inhibit 

secretion (Figure 14A, lanes 5-12). Expression of yopD did reduce the hyper- 
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expression of YopM and YopE in the ΔyopD strain (Figure 14B, lanes 5-8), 

indicating a restoration of YopD’s regulatory role yet hyper secretion of Yops was 

still seen (Figure 14A, lanes 5-8). Interestingly, overexpression of LcrH in a yopD 

strain resulted in a dramatic reduction in cellular expression of YopM and YopE 

(Figure 14B, lanes 9-11), with no secretion occurring with or without the inhibitor 

present (Figure 14A, lanes 9-11). Co-expression of yopD and lcrH resulted in 

complementation to restore the ability of Compound D to inhibit secretion (Figure 

Figure 13. Overexpression of YopD and LcrH in wildtype overcomes Compound D 

(A). Secreted and (B) cellular proteins from Y. pestis KIM8 with overexpressed yopD, lcrH, or yopD 
and lcrH were assessed via immunoblot with antibodies to YopM and YopE in the absence (lanes 1-
2, 5-6, 9-10, and 13-14) and presence of 60 µM Compound D (lanes 3-4, 7-8, 11-12, 15-16). For 
panels A and B odd numbered lanes are samples in the presence of calcium and even numbered 
lanes are samples in the absence of calcium. All lanes are loaded with protein derived from 0.05 
A620•ml of bacterial culture.	  
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14A, lanes 13-16). These results suggest that YopD or the YopD/LcrH complex 

are involved in inhibition by Compound D.  

 

Figure 14. Transcomplementation of Y. pestis ΔyopD with YopD and LcrH restores 
Compound D’s ability to inhibit secretion. 

(A). Secreted and (B) cellular proteins from Y. pestis KIM8 ΔyopD complemented 
with yopD, lcrH, or yopD and lcrH were assessed via immunoblot with antibodies to 
YopM and YopE in the absence of Compound D (lanes 1-2, 5-6, 9-10, and 13-14) 
and presence of 60 µM Compound D (lanes 3-4, 7-8, 11-12, 15-16). For panels A 
and B odd numbered lanes are samples in the presence of calcium and even 
numbered lanes are samples in the absence of calcium. All lanes are loaded with 
protein derived from 0.05 A620•ml of bacterial culture. 
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Interaction of YopD with Compound D 

 In order to evaluate if Compound D was interacting with YopD, His-tagged 

YopD or His-tagged LcrV in PBS or PBS alone was administered to a cobalt-

immobilized metal affinity chromatography (IMAC) resin to retain poly-histidine 

tagged YopD on the resin columns. After washing the columns, DMSO alone, 

Compound D or Compound 2 dissolved in DMSO was added to the columns. 

The flow through was collected and added to Y. pestis KIM8 cultures to test if the 

inhibitor was present and able to inhibit secretion.  Y. pestis KIM8 was grown and 

treated with Compound D that was not gel-treated as a control. Cellular proteins 

were all comparable (Figure 15B).  The flow through from a PBS-only treated 

column with Compound D added was able to inhibit secretion of YopE and 

reduced secretion of YopM, indicating the inhibitor was able to pass through the 

column and not interact with the gel resin (Figure 15A, lanes 5-6). When the 

column was treated with his-tagged LcrV as a negative control, the inhibitor was 

still able to pass through and inhibit secretion as expected, showing that LcrV 

does not bind Compound D (Figure 15A, lanes 7-8) and that Compound D is not 

simply absorbed by protein. As a control a his-tagged YopD-loaded column had 

DMSO alone applied and the flow through was not able to inhibit secretion 

(Figure 15A, lanes 9-10). When Compound D and Compound 2 were 

administered to a his-tagged YopD-loaded column and added to KIM8 cultures, 

the flow-through from the Compound 2-treated column was able to inhibit 

secretion (Figure 15A, lanes 13-14).  However, the flow-through from the 

Compound D-treated column was unable to inhibit secretion, suggesting that 
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Compound D was no longer present to inhibit secretion (Figure 15A, lanes 11-

12), denoting that Compound D was retained on the his-tagged YopD-treated 

column.  This result suggested that his-tagged YopD was able to interact with 

Compound D and Compound D was removed from the DMSO solution.  In 

contrast, the related chemical Compound 2 was not retained under the same 

conditions suggesting the retention of Compound D is a specific interaction. 

These results indicated that Compound D is capable of binding to YopD. 

 

Figure 15. Compound D is pulled out of solution when exposed to YopD.  

Recombinant proteins, His6-YopD (lanes 9-14) or His6-LcrV (lanes 7-8), or PBS (lanes 5-6) were 
combined with Talon affinity gel and Compound D (lanes 7-8 and 11-12) or Compound 2 (lanes 13-14) 
or DMSO (lanes 9-10) were exposed to gel/protein combinations. Flow through was then used to 
evaluate (A) secreted and (B) cellular protein of wildtype strain KIM8 to determine the presence of the 
inhibitors. Evaluation was done via immunoblot using antibodies to YopM and YopE. Control protein 
analysis was done in the absence of Compound D (lanes 1-2) and presence of 60 µM Compound D 
(lanes 3-4). For panels A and B odd numbered lanes are samples in the presence of calcium and even 
numbered lanes are samples in the absence of calcium. All lanes are loaded with protein derived from 
0.05 A620•ml of bacterial culture.	  

Ca2+ 

Ca2+ 
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Secretion of YopE expressed from a non-native promoter is inhibited by 
Compound D 

 A yopE strain retained the ability of Compound D to inhibit Yops secretion 

indicating that YopE is not involved with Compound D’s ability to inhibit Yops 

secretion. YopM and YopN secretion was still inhibited by Compound D in a 

yopE strain (Figure 16A). Since YopE was not involved in Compound D 

inhibition, a truncated YopE-Elk chimera expressed under a non-native promoter 

(araBADp) was used to analyze whether Compound D was acting at the level of 

secretion or expression of Yops. The YopE-Elk chimera was secreted in media 

lacking calcium as expected (Figure 16B: lane 2). However, in the presence of 

Compound D secretion of the YopE-Elk chimera was inhibited along with the 

natively expressed Yops (Figure 16B: lane 4), indicating inhibition of secretion is 

not tied to regulation of gene expression within the T3SS.  

 

Regulatory differences in strains with unregulated Yops secretion by 
Compound D 

 Strains of Y. pestis with certain T3SS regulatory proteins deleted have the 

ability to secrete Yops despite the presence of calcium. These strains 

constitutively secrete Yops and are referred to as ‘calcium blind’ strains. Two 

sets of regulatory calcium blind strains representing two distinct regulatory 

pathways were tested in the presence of Compound D: strains with deletions of 

lcrG, or lcrG and lcrV (Figure 17A-D) and strains with deletions of yopN, yscB, or 

sycN (Figure 18A-F). For the strains lacking LcrG or LcrG and LcrV, secretion of 

Yops was inhibited in the secretion inducing environment of all tested strains.  
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Figure 16. Compound D’s inhibits secretion of a YopE-Elk Chimera 

(A) Secreted proteins from Y. pestis KIM8 ΔyopE were assessed via immunoblots 
probed with antibodies to YopM and YopN in the absence (lanes 1-2) and presence 
of Compound D at 80 µM (lanes 3-4), 60 µM (lanes 5-6), and 20 µM (lanes 7-8). (B) 
Secretion and (C) Cellular proteins from Y. pestis KIM8/pYopE129-Elk were assessed 
via immunoblots probed with antibodies to LcrV, YopE, and Elk in the absence (lanes 
1-2) and presence of Compound D at 60 µM (lanes 3-4). For panels A-C odd 
numbered lanes are samples in the presence of calcium and even numbered lanes 
are samples in the absence of calcium. All lanes are loaded with protein derived from 
0.05 A620•ml of bacterial culture. 

Ca2+ 
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However, secretion of Yops in the presence of calcium was not inhibited, 

indicating a difference in the regulation of the T3SS between the two 

environments. In the strains lacking YopN and its chaperones, YscB and SycN, a 

similar pattern was seen: secretion in the presence of calcium was not affected 

by Compound D. However, in the absence of calcium, YopM and YopE secretion 

was greatly reduced in the ΔyopN and ΔyscB strains (Figure 18A and 18C), or 

Figure 17. Compound D does not block secretion in the presence of Ca2+ in Y. pestis ΔlcrG or 
ΔlcrGV strain  

(A and C) Secreted and (B and D) cellular proteins from regulatory mutants: ΔlcrG (A-B) and 
ΔlcrGV (C-D) were assessed via immunoblots probed with antibodies to YopE and/or YopN in 
the absence (lanes 1-2) and presence of Compound D at 60 µM (lanes 3-4). For panels A-D 
odd numbered lanes are samples in the presence of calcium and even numbered lanes are 
samples in the absence of calcium. All lanes are loaded with protein derived from 0.05 A620•ml 
of bacterial culture. 
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completely absent in the ΔsycN strain (Figure 18E). Cellular levels of Yops were 

comparable in all strains, with a slight reduction in the non-secreting conditions. 

The ability of Compound D to inhibit secretion in the absence of calcium but not 

the presence could indicate an interaction with calcium or that a change in the 

T3SS structure in the absence of calcium allows the inhibitor to cause the effect 

of blocking secretion.  

 

Constitutive secreting yscF mutant inhibited in presence and absence of 
calcium  

 Torruellas et al. identified YscF mutants that constitutively secrete Yops  

(102). We used a pPCP1- derivative of KIM5-3001.P61 +pYscF (D46A)  (102), 

YP814, a strain that has YscF (D46A) expressed in cis on pCD1. YP814 was 

grown with Compound D to see the effect compared to the previous constitutively 

secreting strains. In the case of YscF D46A, Compound D was able to inhibit 

secretion of YopE in both the presence and absence of calcium (Figure 19, lanes 

3 and 4) contrary to what we had seen in in Figures 17 and 18. The result of 

blocking secretion in the presence of calcium shows that Compound D activity is 

not affected by calcium.  This specific mutant, expressing an altered needle, 

allowed Compound D to inhibit secretion in both the presence or absence of 

calcium. These data indicate that a certain needle conformation may be required 

for Compound D to inhibit secretion.  
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Figure 18. Compound D does not block secretion in the presence of Ca2+ in YopN- strains 

(A,C,E) Secreted and (B,D,F) cellular proteins from regulatory mutants: Y. pestis ΔyopN 
(A-B), ΔyscB (C-D), and ΔsycN (E-F) were assessed via immunoblots probed with 
antibodies to YopE and YopM in the absence (lanes 1-2) and presence of Compound D 
at 60 µM (lanes 3-4). For panels A-F odd numbered lanes are samples in the presence 
of calcium and even numbered lanes are samples in the absence of calcium. All lanes 
are loaded with protein derived from 0.05 A620•ml of bacterial culture. 
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Compound 2 role in inhibiting secretion is different than Compound D 

 The related inhibitor, 4,4’-thiobis(3-methylphenol) (Compound 2) (Figure 

20A), discovered by Pan et al.  (82) was assessed in comparison to Compound 

D. Both compounds effectively inhibit secretion of Yops (Figure 20B). However 

where removing YopD can alleviate Compound D’s effect, Compound 2 is 

unaffected (Figure 20C: lanes 1-4). YopD does not play a role in Compound 2’s 

mechanism to inhibit secretion. YopB was also evaluated with Compound 2 and 

again secretion was inhibited indicating YopB is not involved (Figure20C: lanes 

5-8). A constitutive Yops secreting strain lacking LcrG and LcrV was tested to 

see if Compound 2 was only inhibited in the absence of calcium as well. 

Compound 2 was able to inhibit secretion in both the presence and absence of 

calcium, contrary to the effect of Compound D on calcium blind strains 

Figure 19. Yops secretion in a Y. pestis YscF D46A strain is inhibited by Compound D. 

(A) Secreted and (B) cellular proteins from Y. pestis YP814, a strain expressing YscF 
D46A were assessed via immunoblots probed with antibodies to LcrV, YopD, and YopE 
in the absence (lanes 1-2) and presence of Compound D at 60 µM (lanes 3-4). For 
panels A and B odd numbered lanes are samples in the presence of calcium and even 
numbered lanes are samples in the absence of calcium. All lanes are loaded with 
protein derived from 0.05 A620•ml of bacterial culture. 
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(Figure20D). Therefore Compound D and its isomer Compound 2, although both 

inhibitors of type III secretion, are accomplishing inhibition of secretion in different 

ways.  

  A.	  

Figure 20. Compound 2 an isomer of Compound D 
does not target YopD. 

(A).Compound 2 4-4’ thiobis (2-methylphenol) structure. 
(B) Wildtype KIM8 was grown in the absence (lanes 1-2) 
and presence (3-4) of 60 µM Compound 2. Secretion 
was evaluated by immunoblot with antibodies to YopM, 
LcrV and YopE. (C) Translocon mutants YopD and 
YopB were grown in the absence (lanes 1-2, 5-6) and 
presence (3-4, 7-8) of 60 µM Compound 2 and 
evaluated for Yop secretion via immunoblot to 
antibodies of LcrV and YopE. (D) Calcium blind mutant 
LcrGV was also grown up in the absence (lanes 1-2) 
and presence (3-4) of 60 µM Compound 2 and 
evaluated for Yop M and YopE secretion via 
immunoblot. For panels B-D odd numbered lanes are 
samples in the presence of calcium and even numbered 
lanes are samples in the absence of calcium. All lanes 
are loaded with protein derived from 0.05 A620•ml of 
bacterial culture. 
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Effects of Compound D on Pseudomonas aeruginosa and Yersinia 
pseudotuberculosis 

  Compound D’s ability to affect secretion in Pseudomonas aeruginosa and 

Yersinia pseudotuberculosis (Figure 21A and B) was also evaluated. In both 

cases Compound D was able to reduce the level of secretion. Given that the two 

bacteria have increased growth rates compared to Yersinia pestis, it was not 

surprising that the same concentration that was proficient at completely inhibiting 

secretion in Yersinia pestis was not sufficient to inhibit secretion in Pseudomonas 

aeruginosa and Yersinia pseudotuberculosis. However, effector secretion levels 

were definitely affected by the presence of Compound D, indicating this 

compound is effective against other related T3SS.  

Figure 21. Compound D decreases effector 
secretion from P. aeruginosa and Y. 
pseudotuberculosis. 

(A) Secreted proteins from Yersinia 
pseudotuberculosis grown in the 
absence (lane 1-2) and presence (lanes 
3-4) of 60 uM Compound D were 
evaluated by immunoblot for YopE. (B) 
Secreted proteins from Pseudomonas 
aeruginosa at 2 hours (lanes 1-4) and 4 
hours (lanes 5-8) were grown up in the 
absence (lanes 1-2, 5-6) and presence 
(lane 3-4 and 7-8) of 60 uM Compound 
D. Proteins were evaluated by 
immunoblot for ExoU and PopD. For 
panels A and B odd numbered lanes are 
samples in the presence of calcium and 
even numbered lanes are samples in the 
absence of calcium. All lanes are loaded 
with protein derived from 0.05 A620•ml of 
bacterial culture. 
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Results of Needle Protein Activation of Host Cells 

 

Alignment of Needle proteins 

Type III secretion systems found in animal pathogens can be divided up 

into three main families: Ysc injectisomes (e.g. Yersinia spp and Pseudomonas), 

Shigella and Salmonella SPI-1 type injectisomes, and injectisomes like the 

systems found in E. coli and Salmonella SPI-2  (24). Our assessment of needle 

proteins includes at least one needle protein homolog from each T3SS family 

from bacteria that are human pathogens, as well as representing both 

Salmonella injectisomes: needle proteins from Yersinia pestis (YscF), Salmonella 

enterica serovar Typhimurium SPI-1 (PrgI), SPI-2 (SsaG), and Shigella flexneri 

(MxiH). Needle proteins of T3SS are highly conserved, except for the N-termini 

(Figure 22). Selected protein sequences were aligned and truncated forms of 

these proteins were made by deleting the N-termini corresponding to the twenty-

second amino acid from the N-terminus of Yersinia pestis YscF. This 

corresponded to an 18 aa truncation of PrgI, a 15 aa truncation of MxiH, and a 9 

aa truncation of SsaG, which is already naturally truncated in relation to the other 

needle proteins.  
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Alignment Report of needle proteins2.meg J. Hein (PAM250) Page 1
Wednesday, March 20, 2013 9:46 AM

+ Majority

M-----------------------------------------DIS-TXDDXXXXL-------NKQVXDAIXALA--TNPDMajority

10 20 30 40 50 60 70 80

M---------SNFSGFTKGT----------------------DIA-DLDAVAQTLKKPADDANKAVNDSIAALK--DKPD 46YpYscF
M---------------------------ATP-----WSGYLDDVSAKFDTGVDNL-------QTQVTEALDKLA--AKPS 39PrgI
M-----------------------------------------DIAQLVDMLSHM--------AHQAGQAINDKM--NGND 29SsaG
M---------------------------SVTVPNDDWT--LSSLSETFDDGTQTL-------QGELTLALDKLA--KNPS 42MXIH_SHIFL
MAQ--IFNPN--------------------------------PGN-TLDTVANALKEQANAANKDVNDAIKALQGTDNAD 45PscF
MADYFTYTDK--------------------------------NSN-TLDQVATNLSGQANTANTEVNKAIEAMK--TNPD 45AhYscF
MS---FYDAT--------------------------------NSV-NLDDVKTKLEQQAKDANKSVTDAIKNLE--TNAD 42VparaYscF
D-------------------YEWSGYLT--------------GIGRAFDDGVKDL-------NKQLQDAQANLT--KNPS 38BsaL
M-----------------------------------------DISKQFDQGVDDL-------NQQVEKALEDLA--TNPS 30EscF

+ Majority

--NPALLAEXQHKXNXYSXYXNXXSTXVKAXKDLXQGIXQKFRMajority

90 100 110 120

--NPALLADLQHSINKWSVIYNINSTIVRSMKDLMQGILQKFP                                     87YpYscF
--DPALLAAYQSKLSEYNLYRNAQSNTVKVFKDIDAAIIQNFR                                     80PrgI
LLNPESMIKAQFALQQYSTFINYESSLIKMIKDMLSGIIAKI                                      71SsaG
--NPQLLAEYQSKLSEYTLYRNAQSNTVKVIKDVDAAIIQNFR                                     83MXIH_SHIFL
--NPALLAELQHKINKWSVIYNINSTVTRALRDLMQGILQK-I                                     85PscF
--NPALLAELQHKINKWSVIYNINSTVTRAMKDLMQGILQK-I                                     85AhYscF
--DPSKLAELQHAINKWSVVYNINATTTRAIKDVMQSILQK-V                                     82VparaYscF
--DPTALANYQMIMSEYNLYRNAQSSAVKSMKDIDSSIVSNFR                                     79BsaL
--DPKFLAEYQSALAEYTLYRNAQSNVVKAYKDLDSAIIQNFR                                     71EscF

Decoration 'Decoration #1': Shade (with bright yellow at 50% fill) residues that match the 
Consensus exactly.

Decoration 'Decoration #2': Shade (with bright yellow at 50% fill) residues that match the 
Consensus exactly.

Figure 22. Needle proteins multiple sequence alignment demonstrates that the N-termini of 
T3S needle proteins are not conserved. 

 Needle protein sequences from several species of bacteria were aligned, using the 
Jotun Hein algorithm with the PAM250 matrix, with Megalign from the DNAStar 
Lasergene package (v. 10.1).  Identical residues are shown in shaded boxes. Aligned 
needle proteins are from Yersinia pestis, Yersinia pseudotuberculosis, Yersinia 
enterocolitica, Salmonella enterica (both PrgI and SsaG), Shigella flexneri, 
Pseudomonas aeruginosa, Aeromonas hydrophila, Vibrio parahaemolyticus, Burkolderia 
pseudomallei, and E. coli.  
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Response of THP-1 Cells to Needle Proteins 

Evaluation of cellular responses to recombinant whole needle proteins and 

truncated forms of needle proteins by THP-1 X-Blue cells was accomplished by 

measuring SEAP production. SEAP expression is under control of NF-κB and 

AP-1, key transcription factors, that activate cytokine and chemokine expression 

critical for innate immune responses. Therefore an increase in SEAP equated to 

an increase in NF- κB and/or AP-1 activity. All proteins were applied at 1 µg/ml to 

cells. Full length MxiH significantly activated NF- κB/AP-1 as well as truncated 

forms of YscF and PrgI (Figure 23A). Whole YscF, PrgI, and truncated MxiH 

significantly activated cells; however, these proteins had lower levels of activation 

than their counterparts (Figure 23A). These results show that the truncated forms 

of YscF and PrgI increase NF-κB/AP-1 activation to higher levels in comparison 

to the full-length proteins. SsaG, which is only expressed within eukaryotic cells, 

activates cells only slightly more than the truncated form. The responses to the 

N-terminal truncations of YscF and PrgI suggest there may be a hidden host-

activating element, whereas, the presence of the N-terminus of MxiH appears to 

increase interaction of MxiH and Thp-1 X-Blue cells. 

When the proteins were incubated with THP-1 X-Blue cells deficient in 

MyD88, an adaptor protein required for TLR response, the activation of NF-

κB/AP-1 was abolished (Figure 23B). The lack of response by cells lacking 

MyD88 indicates that the response is likely occurring through TLR recognition of 

the needle proteins. 



www.manaraa.com

	   65	  

 

Figure 23. Activation of NF-kB in THP-1 X-Blue cells by needle proteins is MyD88 dependent.  

THP-1 (A) and THP-1 defMyd88 (B) cells were seeded in wells and treated with PBS, HKLM 
(Heat Killed Listeria monocytogenes), LPS, Flagellin, Tri-DAP, or 1ug/ml of needle protein 
dissolved in PBS. SEAP levels were measured as representation of NFkB activation.  

A. 

B. 
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THP-1 response to digested needle proteins  

Needle proteins and flagellin digested with proteinase K were added to 

THP-1 X-Blue cells to confirm that proteins were activating NF-κB/AP-1 (Figure 

24). Proteinase K is a serine protease that cleaves after hydrophobic amino 

acids. Proteinase K in PBS was used as a negative control. As expected, flagellin 

(a TLR5 agonist; positive control) treated with proteinase K abrogated the NF- 

κB/AP-1 response and proteinase K alone did not activate NF-κB/AP-1.  These 

data demonstrate that the proteinase K used did not contain a TLR agonist and 

that, as expected, proteinase K treatment eliminated the ability of flagellin to 

activate NF-kB/Ap-1 (Figure 24). The proteinase K (Figure 24) treated needle 

proteins also failed to illicit NF-κB/AP-1 activation; confirming that proteins are 

causing the cellular activation of NF-κB/AP-1. 

 

  

Figure 24. Activation of NF-kB in THP-1 X-Blue cells by needle proteins is abrogated 
by proteinase K digestion of needle proteins. 

 Proteins, as well as PBS and Flagellin, were digested with Proteinase K before 
incubation with THP-1 X-Blue cells. SEAP levels were measured as a 
representation of NF-kB activation. 
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LPS assay of needle proteins and equivalent responses by THP-1 X-Blue 

cells 

LPS levels were analyzed to evaluate potential contamination of the 

needle protein samples. All samples had approximately 1 EU/mL of LPS (Figure 

25A).  To determine if 1 EU/mL of LPS had a significant effect on NF-κB/AP-1 

activation, the standard concentrations of LPS from the kit were used to treat 

THP-1 X-Blue cells. The results indicated that 1 EU/mL of LPS did not activate 

NF-κB/AP-1 (Figure 25B). Therefore the level of LPS in the needle protein 

samples is not a factor in the activation levels seen in Figure 23.  

 

  

Figure 25. LPS contamination of 
needle proteins is 
minimal. 

 An LPS kit was used to 
analyze the level of LPS 
contamination in the 
needle protein preps (A). 
The standard LPS levels 
were used to treat THP-1 
X-Blue cells (B). SEAP 
levels were measured as 
representation of NFkB 
activation. 

	  

A. 

B. 
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TLR Expressing HEK 293 cells response to needle proteins 

To elucidate the TLRs that needle proteins could signal through, an initial 

screening for TLR interaction was conducted by Invivogen. HEK 293 reporter 

cells transfected with a selected TLR were incubated with YscF and trYscF (data 

not shown). These results indicated HEK 293 cells expressing TLR2 or TLR4 

responded to whole and truncated forms of YscF.  The NF-kB reporter in HEK 

293 cells expressing TLRs 3, 5, 7, 8, or 9 did not respond to YscF or trYscF. The 

reporter in the HEK 293 cells responded more strongly to trYscF than full length 

YscF, confirming our original observations with THP-1 X-Blue cells.  

To further test this result, HEK 293 cells transfected with TLR2, TLR4, or 

TLR5 were acquired and used to assess the needle proteins from other bacterial 

species as well. TLR2 expressing HEK 293 cells showed a similar pattern as 

seen with the THP-1 X-Blue cells where all proteins activated NF-κB/AP-1 

(Figure 26A). Specifically, truncated forms of YscF and PrgI activated NF-κB/AP-

1 more than full length YscF and PrgI. MxiH and SsaG behaved oppositely than 

the other proteins, with full length MxiH and SsaG activating slightly more than 

the truncated forms.  

TLR4 expressing HEK 293 cells also reacted to all the tested needle 

proteins (Figure 26B). YscF activated slightly less than trYscF. PrgI activated 

less than trPrgI, similar as was observed with THP-1 X-Blue and HEK TLR2 

cells. MxiH activated more than trMxiH, again similar to the other cell types. 

SsaG activated slightly less than trSsaG, contrary to previous cell types.  



www.manaraa.com

	   69	  

  

Figure 26. TLR2 and/or TLR4 are necessary for activation of NF-kB by needle proteins 
in HEK293 cells expressing TLR2, TLR4, or TLR5.  

HEK cells that express one particular TLR were tested with 1ug/ml of needle proteins 
dissolved in PBS. HKLM was used as a control for TLR2 (A). LPS was the positive 
control for TLR4 (B). Flagellin was the positive control for TLR5 (C). SEAP levels 
were measured as representation of NFkB activation. 

A. 

B. 

C. 



www.manaraa.com

	   70	  

Since the HEK293/TLR2 and HEK293/TLR4 cells endogenously express 

TLR5, we also tested TLR5 expressing HEK 293 cells. TLR5 expressing cells 

showed no response to any of the needle proteins indicating that the proteins 

were specifically targeting TLR2 and TLR4 (Figure 26C). Taken together the data 

support the idea that needle proteins are recognized as a PAMP by TLR2 and 

potentially TLR4.  Additionally, needle proteins from different bacteria trigger 

responses of varying magnitude and finally that the N-terminus of some needle-

proteins alters the responses by TLRs. 

 

TLR2 Antibodies block activation by needle proteins to TLR2 expressing 
HEK 293 cells 

Antibodies to TLR2 were utilized to assess interaction of needle proteins 

with TLR2 in HEK293/TLR2 cells. Control antibodies and TLR2 antibodies were 

administered at equal concentration to HEK293 cell cultures.  Administration of 

the isotype control antibodies followed by subsequent incubation with needle 

proteins (YscF, trYscF, PrgI, trPrgI, MxiH, trMxiH, SsaG, and trSsaG) resulted in 

no significant decrease to NF-κB/AP-1 activation by the needle proteins (Figure 

27). After treatment of the cell cultures with TLR2 antibody and subsequent 

incubation with needle proteins (Figure 27), NF- κB/AP-1 activation was 

significantly decreased when compared to control antibody in the case of trYscF, 

PrgI, trPrgI, MxiH, trMxiH, SsaG, and trSsaG (Figure 27). YscF was not 

significantly decreased (Figure 27); however, YscF alone had low activation of 

NF-κB/AP-1 (Figure 27).  These results confirm that the needle-proteins are 
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activating NF-κB and/or AP-1 through TLR2 as neutralization of TLR2 with 

antibodies abrogated the needle protein induced response in the HEK293/TLR2 

cells. 

 

TLR4 inhibitor CL1-095 inhibits response of THP-1 cells 

 TLR4 inhibitor CL1-095 was used to treat THP-1 cells prior to treatment 

with LPS, flagellin, or needle proteins (YscF, trYscF, PrgI, trPrgI, MxiH, trMxiH, 

SsaG, and trSsaG). Cells left untreated with CL1-095 reacted to LPS or proteins 

in the same pattern as seen in Figure 28. Those cells treated with CL1-095 did 

Figure 27. Antibody to TLR2 blocks NF-kB activation in response to needle proteins in 
HEK293 cells expressing TLR2 cells. 

 HEK TLR2 cells were treated with HKLM or needle proteins after no treatment, an 
antibody control, or antibody to TLR2. SEAP levels were measured as representation of NFkB 
activation.	  
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not react to LPS. Reaction to flagellin was left intact, as expected, and reaction to 

needle proteins was in all cases significantly reduced, although not quite to basal 

levels, suggesting that activation of THP-1 cells by needle proteins can be 

reduced by antagonizing TLR4.  

 

TNF-α expression in response to needle proteins 

THP-1 X-Blue cells were treated with PBS, LPS, full length and truncated 

forms of needle proteins. After 5 hours supernatants were collected and 

assessed via ELISA for TNF-α production. As expected, PBS treated cells 

produced no TNF-α and LPS treatment led to production of TNF-α (Figure 29). 

Figure 28. The TLR4 inhibitor CL1-095 blocks activation of NF-kB by needle proteins in THP-1 
X-Blue cells. 

  THP-1 cells were treated with PBS, LPS, Flagellin, or needle proteins. Prior to treatment 
cells were either left untreated or treated with TLR4 inhibitor CL1-095. SEAP levels were 
measured as representation of NFkB activation. 
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Truncated forms of YscF produced significantly more TNF-α than full-length 

forms of YscF, consistent with the assays for NF-κB/AP-1 activation. Full length 

YscF did induce TNF-α but to a lower extent than trYscF. PrgI induced TNF-α 

however trPrgI induced slightly more (Figure 29). MxiH induced more TNF-α than 

trMxiH, which agrees with previous data indicating MxiH activated NF-κB/AP-1 

more than trMxiH. SsaG induced more TNF-α than trSsaG, which also correlates 

with our NF-κB/AP-1 data. These results indicate that the increases in NF-κB 

activation seen consequentially leads to an increase in TNF-α levels in cell 

culture supernatants. 

 

Figure 29. Activation of THP-1 X-Blue cells by needle proteins results in TNF-α 
secretion. 

 THP-1 cells were treated with PBS, LPS, or needle proteins. After 5 hours 
supernatants were collected and tested by ELISA for production of TNFα.  

	  



www.manaraa.com

	   74	  

CHAPTER IV 

DISCUSSION 

 

 To understand and combat disease, a multifaceted approach must be 

taken to advance our knowledge ahead of the pathogen evolution to evade our 

treatments. The two projects described here present a multifaceted approach to 

understanding Y. pestis virulence. Bacteria manipulate the host immune system 

in a targeted manner to cause disease, this manipulation is shown by the 

modulation of host response by the N-termini of T3SS needle proteins. These 

manipulations of the host immune system give an advantage to the bacterium. 

However, gaining understanding of how these manipulations occur can allow 

science to develop new treatments to contest the bacteria by giving the host 

immune system the advantage. Currently, new treatments such as small-

molecule inhibitors to T3SS, are being developed as anti-virulence therapies in 

contrast to the traditional anti-metabolic and anti-biosynthetic strategies that 

fueled the development of modern antibiotics. Inhibiting the T3SS, a major 

virulence factor in many human gram-negative bacteria, leaves the pathogen 

unable to modulate the host immune response as effectively and allows the host 

to mount a successful attack on the bacteria. This method allows the immune 

system to effectively clear the pathogen itself without affecting the natural 

microbiome of the host, and also reduces the selective pressure that antibiotics 
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create  (21). N-terminally truncated needle proteins could be developed as 

adjuvants or immune modulators, again shifting the advantage to the host. If host 

immune cells can be primed to react with N-terminally truncated needle proteins, 

then the host could either respond better to vaccinations or jump-start a host 

response to a current infection. In the current arms race we are engaged in with 

pathogens, advancement on many fronts will be the key to staying ahead of our 

adversaries.  

  Consequently, in researching two aspects of the T3SS, there are 

implications to the system that each project uniquely uncovers. Compound D, 

was shown to effectively inhibit the secretion of toxins in a family of T3SSs. This 

effect was mediated through YopD and possibly LcrQ and LcrH, and also 

required a secretion active conformational state of the T3SS. Compound D also 

revealed a functional difference between secretion by calcium blind strains in the 

presence and absence of calcium. Studies into the host response to needle 

proteins revealed that these proteins have the ability to activate host cells 

through TLR2 and TLR4 and that the N-terminus may modulate that interaction.  

 

Compound D 

Studies with Compound D show that Yops secretion in Y. pestis is 

inhibited by Compound D. LcrV was secreted prior to the Compound D-mediated 

blockage of the T3S system, indicating the secretion apparatus is functional due 

to its ability to secrete LcrV; however, no proteins after LcrV are secreted. This 

inhibition of Yops secretion requires YopD and results show that YopD was able 



www.manaraa.com

	   76	  

to pull Compound D out of solution, implying a direct interaction between the two. 

LcrQ and LcrH appear to also play a role in inhibition.  

YopD is unique when compared to other identified targets of T3S systems, 

such as LcrF, ExsA, YscN and other suspected proteins of the T3S apparatus or 

membrane rings  (34, 41, 43, 100, 106). These targeted proteins alter the T3S 

basal structural components or expression of the apparatus genes, as opposed 

to YopD, a translocon protein, presumably an early secreted protein also known 

to play a role in the regulation of expression of other Yops  (14). YopD’s 

regulatory role is shared with its chaperone LcrH, which is also needed for 

effective delivery of YopD to the secretion apparatus  (37). The regulatory role of 

YopD and LcrH revolves around Yops translation. This protein pair may interact 

with mRNA of Yops and prevent their translation  (20). Thus, when either of 

these proteins is deleted, Yop expression increases  (37). However, the 

involvement of YopD/LcrH in Yop expression is difficult to separate from 

secretion induced Yop expression  (32). Therefore, to elucidate whether 

Compound D was affecting regulation or simply physically blocking secretion 

becomes difficult. 

 In order to begin clarifying the mechanism of Compound D inhibition, 

several factors were investigated. Beginning at the level of transcription, a YopE-

chimera, expressed under the control of a non-LCR regulated promoter, was not 

secreted in the presence of Compound D, implying the inhibitor is able to block 

secretion of a protein not under LCR control.  The YopE-chimera was produced 

using the araBADp promoter, creating a large cellular pool of the protein, which 
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still could not overcome the inhibition of Compound D, suggesting that a physical 

blockage of the apparatus is possible. This result suggests that Compound D is 

working at the level of secretion and not at the level of LCR regulation. The hyper 

production of Yops in a YopD mutant presents the idea that Compound D could 

be overwhelmed by YopD production to restore Yops secretion despite the 

presence of the inhibitor. This assertion proved false, requiring co-

overexpression of YopD and its chaperone LcrH, and suggests YopD may not be 

the only protein required for Compound D mediated secretion inhibition. 

The involvement of LcrH and LcrQ is perplexing in that both proteins are 

known to play multiple roles that are hard to distinguish from each other and 

YopD in deletion mutants. LcrH is known to be required not only for regulation 

but also for effective YopD and YopB delivery to the secretion apparatus. 

Therefore, the result of inhibition of YopE secretion, but not YopM secretion, by 

Compound D in the lcrH mutant can be interpreted multiple ways. Due to the 

regulatory role LcrH performs in combination with YopD in decreasing Yops 

translation, the lack of LcrH could affect the production of Yops. Although, this 

effect was only seen on YopE, since YopM was produced and secreted in this 

mutant. These results imply that either LcrH/YopD regulation does not equally 

affect all Yops or that the regulatory role is not significant for Compound D 

inhibition. The lack of LcrH could also affect YopD’s delivery to the apparatus, 

although this is also confounded by the secretion of YopM but not YopE. Notably, 

overexpression of LcrH in figures 13 and 14 caused a dramatic decrease in 

cellular expression of Yops and subsequently no secretion. This was not in 
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conjunction with Compound D as this occurred in the absence of the inhibitor. 

Compound D inhibition occurs through YopD but is affected by LcrH, and in a 

non-LCR dependent manner.  

LcrQ is also proposed to have multiple functions in the T3S system. Wulff-

Strobel et al. propose that LcrQ plays a role in regulation of Yops secretion at the 

level of the “ysc gate”  (110). This regulatory function is thought to determine 

substrate specificity at the gate of the apparatus, affecting the hierarchy of Yops 

secretion  (110). If Compound D is affecting YopD and preventing secretion at 

the site of the “Ysc gate”, it is possible that the lack of LcrQ at the gate may alter 

the mechanism of inhibition. However, others propose that LcrQ function is 

similar to YopD/LcrH function to regulate Yop production  (19, 85). Similar to the 

lcrH mutant, Compound D’s effect on the lcrQ mutant was more pronounced on 

YopE than YopM. It is note worthy that YopM does not require a chaperone while 

YopE does  (104). Whether chaperones play a factor in secretion of Yops at the 

“ysc gate” has yet to be elucidated; although their role in determining the 

secretion hierarchy has been implicated by Boyd et al  (9). Therefore, the results 

of LcrH and LcrQ affecting the production of YopE support the idea of a 

regulatory role being affected by Compound D to inhibit secretion. However, the 

lack of effect on YopM production could imply regulation by these proteins is 

either not equal, or the involvement of LcrH and LcrQ in inhibition by Compound 

D is much more complex and requires further study. 

The ability of Compound D to affect effector secretion in Pseudomonas 

aeruginosa argues that the inhibition of Yops secretion by Compound D is not 
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directed at the regulatory effects of YopD. Broms et al. showed that PopD was 

unable to substitute for YopD in the Yersinia system due to its lack of regulatory 

function  (14). Compound D’s ability to affect secretion in P. aeruginosa indicates 

the regulatory function is not required for inhibiting secretion. These results 

suggest Compound D does not affect the regulatory role YopD plays in secretion 

but rather that Compound D works at the level of secretion through YopD.  

The calcium blind strains, caused by disrupted regulation, exposed to 

Compound D revealed that the inhibitor could only successfully inhibit secretion 

with these particular strains in the environment lacking calcium. However, a 

calcium blind YscF D46A mutant strain indicated this was not due to a calcium 

effect on Compound D but likely due to a change in the secretion system. These 

results support the hypothesis that the removal of calcium results in a functional 

change in the Ysc apparatus to allow secretion and that this change involves the 

needle protein YscF  (8). Torruellas et al. discovered mutations in YscF that allow 

for constitutive secretion, implying that the needle protein plays a role in calcium 

sensing or transmission of the calcium sensing signal to the basal structure  

(102). In the case of regulatory calcium blind strains (e.g. loss of LcrG or YopN 

function), the ability of Compound D to work in one environment and not the 

other implies that secretion in the presence and absence of calcium do not occur 

in the same manner. The removal of the regulator (LcrG or YopN) alone allows 

secretion by the system in the presence of calcium. While in the absence of 

calcium, a change in the secretion apparatus still occurs through the calcium 

sensing mechanism; Compound D may affect that signaling. The requirement of 



www.manaraa.com

	   80	  

an “active secretion state” for Compound D to inhibit secretion implies the 

mechanism of inhibition occurs at the apparatus and not at the regulatory roles of 

YopD, LcrH, or LcrQ.  

The proposed model of inhibition by Compound D includes an interaction 

with YopD, which is affected by LcrH and LcrQ, and does not involve secretion 

regulatory proteins LcrG, LcrV, YopN, YscB, SycN. Inhibition of the T3SS can still 

occur for proteins not under LCR expression and regulation. The inhibition does 

require the sensing of calcium and the subsequent alteration in the needle 

apparatus. Given these results we propose the following model of inhibition by 

Compound D, where Compound D’s effect occurs at the site of secretion (Figure 

30). The elucidation of detached control upon secretion in calcium blind strains 

led us to develop a separate model (Figure 31). In this model of the calcium blind 

strains, secretion occurs despite the absence of a signal in the presence of 

calcium, while in the YscF D46A the mutation signals for secretion in both 

calcium environments, which allows Compound D to inhibit secretion in both 

cases.  

 Interestingly the T3SS inhibitor Compound 2, an isoform of Compound D, 

discovered by Pan et al.  (83) does not work in the same manner. Deletion of 

neither translocon proteins, YopD or YopB, alleviated Compound 2’s ability to 

inhibit secretion, nor did Compound 2 have the same effect on constitutive 

secretors, as it inhibited both in the presence and absence of calcium. Although  
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Figure 30. Mechanism for Compound D inhibition in Yersinia pestis T3SS 

 (A) Diagram of T3SS in the presence of calcium. Secretion is regulated by LcrG and YopN while 
Yop translation is prevented by YopD/LcrH and no secretion occurs (B) Diagram of T3SS in the absence 
of calcium. Calcium signal initiates secretion, LcrG is titrated away by LcrV, YopN is secreted, Yop 
translation is released from YopD/LcrH and Yops are secreted into medium. (C) Compound D is present 
however secretion is regulated by LcrG and YopN while Yop translation is prevented by YopD/LcrH and 
no secretion occurs. (D) In the presence of Compound D the calcium signal initiates secretion however 
YopD/Compound D blocks secretion at the “Ysc gate”. Translation of Yops is still inhibited because YopD 
levels are not lowered by secretion.  
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Figure 31. Mechanism for Compound D inhibition of calcium blind Yersinia pestis T3SS 
strains. 

(A) Calcium blind strains lacking LcrG/YopN secrete Yops into the medium despite the presence of 
calcium and lack of a secretion signal. (B-C) YscF(D46A) is mutated to a locked position of sending a 
calcium signal, in the presence of Compound D this allows secretion to be inhibited no matter if 
calcium is present or not.  
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both compounds are able to target the T3SS in multiple strains of bacteria, they 

fascinatingly inhibit secretion in completely separate ways.  

Unfortunately both compounds were found to be toxic: Compound 2 

caused cell rounding and detachment and LDH release  (83) and high serum 

protein binding (1), while Compound D was capable of lysing red-blood cells 

making translocation analysis in the presence of the inhibitor impossible. This 

also means these two compounds without modification would be poor candidates 

as potential antimicrobials. However, the unique manner in which Compound D 

inhibits secretion may lead us to a greater understanding of the complex 

regulation of this system and give insight on the deeply intertwined structural role 

the apparatus plays in regulation of secretion. 

 

Host response to T3SS needle proteins 

Characterization of the needle protein’s (MxiH, SsaG, YscF, and PrgI) 

ability to induce innate immune factors revealed: 1) NF-kB/AP-1 is activated by 

needle proteins or portions of needle proteins. 2) Activation of NF-kB/AP-1 by 

needle proteins is dependent upon MyD88. 3) Activation occurred exclusively 

through TLR2 and TLR4. 4) Observed variation in the N-terminus of needle 

proteins appears to modify the interaction with TLRs. 

YscF comes from the T3SS of bacteria that have anti-inflammatory 

infection objectives.  This needle protein elicits lower levels of NF-kB/AP-1 

activation and TNF-α; however, the N-terminally truncated forms have the 
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opposite effect and induce higher NF-kB/AP-1 activation as well as TNF-α.  

Interestingly, a similar phenomenon is seen with flagellin and its homologs.  The N-

terminus of flagellin is involved in immune evasion by some bacteria (Helicobacter, 

Campylobacter and Bartonella)  (3). 

Shigella and Salmonella are known to cause largely pro-inflammatory 

responses to the host in order to cause disease  (52, 86). The Shigella needle-

protein, MxiH, acted in accordance to this overarching goal of infection; as it 

induced increased NF-kB/AP-1 and TNF-α as a full-length protein. Removal of 

the N-terminus of MxiH actually attenuated the cellular response, indicating that 

the N-terminus positively adds to the pro-inflammatory environment by activating 

TLRs.  Unexpectedly, PrgI acted similarly to YscF, less inflammatory in its natural 

state. It is possible other factors play a larger role in the fine-tuned pro-

inflammatory response to Salmonella. 

The Salmonella SPI-2 needle protein SsaG more equally activated in its 

full-length form and after N-terminal truncation. SsaG is already “naturally” 

truncated when compared to other needle proteins. Under our hypothesis that 

the N-termini of needle proteins modulate TLR interaction, there would be no 

need for an extended N-terminus because SsaG is not exposed to TLRs 

expressed on the outside of the host cell, since SPI-2 is only expressed once 

Salmonella is enclosed in the Salmonella Containing Vacuole  (13) inside the 

host cell. Exposure to host TLRs may create pressures for the N-terminus of 

needle proteins to modulate host responses. 
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TLR4 is already known to play a unique role in Yersinia pestis 

pathogenesis because Yersinia pestis produces a tetra-acylated LPS  (53). This 

change in acylation results in weaker TLR4 stimulation and subsequent deficient 

activation of the immune system, keeping the bacteria under the host’s radar  

(101). TLR4’s role in recognition of needle proteins was less expected than the 

more promiscuous TLR2. However, there are several documented cases of 

TLR4 interaction with pathogen associated substrates other than LPS: 

Respiratory Syncytial Virus (RSV) fusion protein  (89), chlamydial Hsp60  (17), 

pneumolysin  (64), Francisella tularensis DnaK  (4), and Ebola virus glycoprotein  

(81), and cell wall components from Pseudallescheria boydii  (35). Many of these 

pathogen associated molecular patterns (PAMPs) are well characterized as to 

the exact method of interaction with TLR4, and future research in our lab will 

hopefully elucidate how needle proteins interact with TLR4, including whether 

MD-2 or CD-14 is required for this interaction.  

The Neisserial porin, PorB, is also a surface exposed protein. PorB is 

highly conserved among Neisseria species, except for the surface exposed 

loops. Much like T3S needle proteins, PorB, specifically the exposed loops, were 

found to interact with TLR2. The interaction with TLR2 was found to be 

dependent on specific amino acids and the variation between PorB of different 

Neisseria species creates unique “TLR2 binding signatures”. Specific binding 

signatures were found to be more or less inflammatory through interaction with 

TLR2  (61, 65, 103). We propose that the T3SS needle proteins N-terminal 

variation between species acts similar to PorB, in that the unique surface 
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exposed N-terminus creates a unique binding signature, which modulates the 

host response to the bacteria.  

Currently, we do not know the specifics of which amino acid sequences 

play a role in interactions with TLRs. We cannot at this time rule out the 

possibility that the binding signature is created by a change in protein structure, 

which could also be affected by the his-tag, as opposed to specific amino acid 

sequences. However, this research does describe a new class of PAMP that 

interacts with TLRs in an unexpected manner. This discovery has the potential to 

increase our understanding of host responses to T3S utilizing pathogens and to 

extend our knowledge of how other host processes may interact with T3S 

apparatuses.
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